Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We briefly describe a dynamic control system framework for neuromodulation for epilepsy, with an emphasis on its practical challenges and the preliminary validation of key prototype technologies in a chronic animal model. The current state of neuromodulation can be viewed as a classical dynamic control framework such that the nervous system is the classical "plant", the neural stimulator is the controller/actuator, clinical observation, patient diaries and/or measured bio-markers are the sensor, and clinical judgment applied to these sensor inputs forms the state estimator. Technology can potentially address two main factors contributing to the performance limitations of existing systems: "observability," the ability to observe the state of the system from output measurements, and "controllability," the ability to drive the system to a desired state. In addition to improving sensors and actuator performance, methods and tools to better understand disease state dynamics and state estimation are also critical for improving therapy outcomes. We describe our preliminary validation of key "observability" and "controllability" technology blocks using an implanted research tool in an epilepsy disease model. This model allows for testing the key emerging technologies in a representative neural network of therapeutic importance. In the future, we believe these technologies might enable both first principles understanding of neural network behavior for optimizing therapy design, and provide a practical pathway towards clinical translation.

Original publication

DOI

10.1109/iembs.2011.6090172

Type

Journal article

Journal

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference

Publication Date

01/2011

Volume

2011

Pages

753 - 756

Addresses

Neuroengineering Group of Medtronic Neuromodulation Technology. timothy.denison@medtronic.com

Keywords

Brain, Humans, Epilepsy, Deep Brain Stimulation, Biotechnology, Models, Neurological, Computer Simulation, Biofeedback, Psychology