Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Key pointsDynamic cerebral autoregulation (CA) is often expressed by the mean arterial blood pressure (MAP)-cerebral blood flow (CBF) relationship, with little attention given to the dynamic relationship between MAP and cerebrovascular resistance (CVR). In CBF velocity (CBFV) recordings with transcranial Doppler, evidence demonstrates that CVR should be replaced by a combination of a resistance-area product (RAP) with a critical closing pressure (CrCP) parameter, the blood pressure value where CBFV reaches zero due to vessels collapsing. Transfer function analysis of the MAP-CBFV relationship can be extended to the MAP-RAP and MAP-CrCP relationships, to assess their contribution to the dynamic CA response. During normocapnia, both RAP and CrCP make a significant contribution to explaining the MAP-CBFV relationship. Hypercapnia, a surrogate state of depressed CA, leads to marked changes in dynamic CA, that are entirely explained by the CrCP response, without further contribution from RAP in comparison with normocapnia.AbstractDynamic cerebral autoregulation (CA) is manifested by changes in the diameter of intra-cerebral vessels, which control cerebrovascular resistance (CVR). We investigated the contribution of critical closing pressure (CrCP), an important determinant of CVR, to explain the cerebral blood flow (CBF) response to a sudden change in mean arterial blood pressure (MAP). In 76 healthy subjects (age range 21-70 years, 36 women), recordings of MAP (Finometer), CBF velocity (CBFV; transcranial Doppler ultrasound), end-tidal CO2 (capnography) and heart rate (ECG) were performed for 5 min at rest (normocapnia) and during hypercapnia induced by breathing 5% CO2 in air. CrCP and the resistance-area product (RAP) were obtained for each cardiac cycle and their dynamic response to a step change in MAP was calculated by means of transfer function analysis. The recovery of the CBFV response, following a step change in MAP, was mainly due to the contribution of RAP during both breathing conditions. However, CrCP made a highly significant contribution during normocapnia (P 

Original publication

DOI

10.1113/jp280439

Type

Journal article

Journal

The Journal of physiology

Publication Date

12/2020

Volume

598

Pages

5673 - 5685

Addresses

Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.

Keywords

Humans, Carbon Dioxide, Ultrasonography, Doppler, Transcranial, Blood Flow Velocity, Homeostasis, Blood Pressure, Cerebrovascular Circulation, Partial Pressure, Adult, Aged, Middle Aged, Female, Young Adult