Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The cellular prion protein (PrP C ) converts to alternatively folded pathogenic conformations (PrP Sc ) in prion infections and binds neurotoxic oligomers formed by amyloid-β α-synuclein, and tau. β-Endoproteolysis, which splits PrP C into N- and C-terminal fragments (N2 and C2, respectively), is of interest because a protease-resistant, C2-sized fragment (C2 Sc ) accumulates in the brain during prion infections, seemingly comprising the majority of PrP Sc at disease endpoint in mice. However, candidates for the underlying proteolytic mechanism(s) remain unconfirmed in vivo. Here, a cell-based screen of protease inhibitors unexpectedly linked type II membrane proteins of the S9B serine peptidase subfamily to PrP C β-cleavage. Overexpression experiments in cells and assays with recombinant proteins confirmed that fibroblast activation protein (FAP) and its paralog, dipeptidyl peptidase-4 (DPP4), cleave directly at multiple sites within PrP C ’s N-terminal domain. For wild-type mouse and human PrP C substrates expressed in cells, the rank orders of activity were human FAP ~ mouse FAP > mouse DPP4 > human DPP4 and human FAP > mouse FAP > mouse DPP4 >> human DPP4, respectively. C2 levels relative to total PrP C were reduced in several tissues from FAP-null mice, and, while knockout of DPP4 lacked an analogous effect, the combined DPP4/FAP inhibitor linagliptin, but not the FAP-specific inhibitor SP-13786, reduced C2 Sc and total PrP Sc levels in two murine cell-based models of prion infections. Thus, the net activity of the S9B peptidases FAP and DPP4 and their cognate inhibitors/modulators affect the physiology and pathogenic potential of PrP C .

Original publication

DOI

10.1073/pnas.2209815120

Type

Journal article

Journal

Proceedings of the National Academy of Sciences

Publisher

Proceedings of the National Academy of Sciences

Publication Date

03/01/2023

Volume

120