Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:p> Much of the motor impairment associated with Parkinson’s disease is thought to arise from pathological activity in the networks formed by the basal ganglia (BG) and motor cortex. To evaluate several hypotheses proposed to explain the emergence of pathological oscillations in parkinsonism, we investigated changes to the directed connectivity in BG networks following dopamine depletion. We recorded local field potentials (LFPs) in the cortex and basal ganglia of rats rendered parkinsonian by injection of 6-hydroxydopamine (6-OHDA) and in dopamine-intact controls. We performed systematic analyses of the networks using a novel tool for estimation of directed interactions (nonparametric directionality, NPD). We used a “conditioned” version of the NPD analysis that reveals the dependence of the correlation between two signals on a third reference signal. We find evidence of the dopamine dependency of both low-beta (14–20 Hz) and high-beta/low-gamma (20–40 Hz) directed network interactions. Notably, 6-OHDA lesions were associated with enhancement of the cortical “hyperdirect” connection to the subthalamic nucleus (STN) and its feedback to the cortex and striatum. We find that pathological beta synchronization resulting from 6-OHDA lesioning is widely distributed across the network and cannot be located to any individual structure. Furthermore, we provide evidence that high-beta/gamma oscillations propagate through the striatum in a pathway that is independent of STN. Rhythms at high beta/gamma show susceptibility to conditioning that indicates a hierarchical organization compared with those at low beta. These results further inform our understanding of the substrates for pathological rhythms in salient brain networks in parkinsonism. </jats:p><jats:p> NEW &amp; NOTEWORTHY We present a novel analysis of electrophysiological recordings in the cortico-basal ganglia network with the aim of evaluating several hypotheses concerning the origins of abnormal brain rhythms associated with Parkinson’s disease. We present evidence for changes in the directed connections within the network following chronic dopamine depletion in rodents. These findings speak to the plausibility of a “short-circuiting” of the network that gives rise to the conditions from which pathological synchronization may arise. </jats:p>

Original publication

DOI

10.1152/jn.00629.2017

Type

Journal article

Journal

Journal of Neurophysiology

Publisher

American Physiological Society

Publication Date

01/05/2018

Volume

119

Pages

1608 - 1628