Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Myasthenia and related disorders of the neuromuscular junction.

    2 July 2018

    Our understanding of transmission at the neuromuscular junction has increased greatly in recent years. We now recognise a wide variety of autoimmune and genetic diseases that affect this specialised synapse, causing muscle weakness and fatigue. These disorders greatly affect quality of life and rarely can be fatal. Myasthenia gravis is the most common disorder and is most commonly caused by autoantibodies targeting postsynaptic acetylcholine receptors. Antibodies to muscle-specific kinase (MuSK) are detected in a variable proportion of the remainder. Treatment is symptomatic and immunomodulatory. Lambert-Eaton myasthenic syndrome is caused by antibodies to presynaptic calcium channels, and approximately 50% of cases are paraneoplastic, most often related to small cell carcinoma of the lung. Botulism is an acquired disorder caused by neurotoxins produced by Clostridium botulinum, impairing acetylcholine release into the synaptic cleft. In addition, several rare congenital myasthenic syndromes have been identified, caused by inherited defects in presynaptic, synaptic basal lamina and postsynaptic proteins necessary for neuromuscular transmission. This review focuses on recent advances in the diagnosis and treatment of these disorders.

  • Hairpin DNAzymes: a new tool for efficient cellular gene silencing.

    2 July 2018

    BACKGROUND: RNA-based gene silencing is potentially a powerful therapeutic strategy. Catalytic 10-23 DNAzymes bind to target RNA by complimentary sequence arms on a Watson-Crick basis and thus can be targeted to effectively cleave specific mRNA species. However, for in vivo applications it is necessary to stabilise DNAzymes against nucleolytic attack. Chemical modifications can be introduced into the binding arms to increase stability but these may alter catalytic activity and in some cases increase cell toxicity. METHODS: We designed novel 10-23 DNAzyme structures that incorporate stem-loop hairpins at either end on the DNAzyme binding arms. The catalytic activity of hairpin DNAzymes (hpDNAzyme) were tested in vitro against 32P-labelled cRNA encoding the muscle acetylcholine receptor (AChR) alpha-subunit. Resistance of hpDNAzymes to nucleolytic degradation was tested by incubation of the hpDNAzymes with Bal-31, DNase1 or HeLa cell extract. Gene silencing by hpDNAzymes was assessed by measuring reduced fluorescence from DsRed2 and EGFP reporters in cell culture systems, and reduced 125I-alpha-bungarotoxin binding in cells transfected with cDNA encoding the AChR. RESULTS: We show that hpDNAzymes show remarkable resistance to nucleolytic degradation, and demonstrate that in cell culture systems the hpDNAzymes are far more effective than standard 10-23 DNAzymes in down-regulating protein expression from target mRNA species. CONCLUSION: hpDNAzymes provide new molecular tools that, without chemical modification, give highly efficient gene silencing in cells, and may have potential therapeutic applications.

  • Pre- and post-synaptic abnormalities associated with impaired neuromuscular transmission in a group of patients with 'limb-girdle myasthenia'.

    2 July 2018

    The properties of neuromuscular junctions (NMJs) were studied in motor-point biopsy samples from eight patients with congenital myasthenic syndromes affecting primarily proximal limb muscles ['limb-girdle myasthenia' (LGM)]. All had moderate to severe weakness of the proximal muscles, without short-term clinical fatigability but with marked variation in strength over periods of weeks or months, with little or no facial weakness or ptosis and no ophthalmoplegia. Most had a characteristic gait and stance. All patients showed decrement of the compound muscle action potential (CMAP) on repetitive stimulation at 3 Hz, and increased jitter and blocking was detected by SFEMG, confirming the presence of impaired neuromuscular transmission. None of the patients had serum antibodies against acetylcholine receptors (AChRs). Two of the patients had similarly affected siblings. Intracellular recording from isolated nerve-muscle preparations revealed that the quantal content (the number of ACh quanta released per nerve impulse) was only approximately 50% of that in controls. However, the quantal size (amplitude of miniature end-plate currents) and the kinetic properties of synaptic potentials and currents were similar to control values. The area of synaptic contact and extent of post-synaptic folding were approximately 50% of control values. Thus, the quantal content per unit area of synaptic contact was normal. The number of AChRs per NMJ was also reduced to approximately 50% of normal, so the local AChR density was normal. Immunolabelling studies revealed qualitatively normal distributions and abundance of each of 14 proteins normally concentrated at the NMJ, including components of the basal lamina, post-synaptic membrane and post-synaptic cytoskeleton. DNA analysis failed to detect mutations in the genes encoding any of the following proteins: AChR subunits, rapsyn, ColQ, ChAT or muscle-specific kinase. Response of these patients to treatment was varied: few showed long-term improvement with pyridostigmine and some even deteriorated with treatments, while others had intolerable side-effects. Several patients showed improvement with 3,4-diaminopyridine, but this was generally only transient. Ephedrine was helpful in half of the patients. We conclude that impaired neuromuscular transmission in these LGM patients results from structural abnormalities of the NMJ, including reduced size and post-synaptic folding, rather from any abnormality in the immediate events of neuromuscular transmission.