Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Modulating hemispheric lateralization by brain stimulation yields gain in mental and physical activity.

    2 July 2018

    Imagery plays an important role in our life. Motor imagery is the mental simulation of a motor act without overt motor output. Previous studies have documented the effect of motor imagery practice. However, its translational potential for patients as well as for athletes, musicians and other groups, depends largely on the transfer from mental practice to overt physical performance. We used bilateral transcranial direct current stimulation (tDCS) over sensorimotor areas to modulate neural lateralization patterns induced by unilateral mental motor imagery and the performance of a physical motor task. Twenty-six healthy older adults participated (mean age = 67.1 years) in a double-blind cross-over sham-controlled study. We found stimulation-related changes at the neural and behavioural level, which were polarity-dependent. Specifically, for the hand contralateral to the anode, electroencephalographic activity induced by motor imagery was more lateralized and motor performance improved. In contrast, for the hand contralateral to the cathode, hemispheric lateralization was reduced. The stimulation-related increase and decrease in neural lateralization were negatively related. Further, the degree of stimulation-related change in neural lateralization correlated with the stimulation-related change on behavioural level. These convergent neurophysiological and behavioural effects underline the potential of tDCS to improve mental and physical motor performance.

  • Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease.

    3 July 2018

    OBJECTIVES: Firstly, to identify subthalamic region stimulation clusters that predict maximum improvement in rigidity, bradykinesia and tremor, or emergence of side-effects; and secondly, to map-out the cortical fingerprint, mediated by the hyperdirect pathways which predict maximum efficacy. METHODS: High angular resolution diffusion imaging in twenty patients with advanced Parkinson's disease was acquired prior to bilateral subthalamic nucleus deep brain stimulation. All contacts were screened one-year from surgery for efficacy and side-effects at different amplitudes. Voxel-based statistical analysis of volumes of tissue activated models was used to identify significant treatment clusters. Probabilistic tractography was employed to identify cortical connectivity patterns associated with treatment efficacy. RESULTS: All patients responded well to treatment (46% mean improvement off medication UPDRS-III [p < 0.0001]) without significant adverse events. Cluster corresponding to maximum improvement in tremor was in the posterior, superior and lateral portion of the nucleus. Clusters corresponding to improvement in bradykinesia and rigidity were nearer the superior border in a further medial and posterior location. The rigidity cluster extended beyond the superior border to the area of the zona incerta and Forel-H2 field. When the clusters where averaged, the coordinates of the area with maximum overall efficacy was X = -10(-9.5), Y = -13(-1) and Z = -7(-3) in MNI(AC-PC) space. Cortical connectivity to primary motor area was predictive of higher improvement in tremor; whilst that to supplementary motor area was predictive of improvement in bradykinesia and rigidity; and connectivity to prefrontal cortex was predictive of improvement in rigidity. INTERPRETATION: These findings support the presence of overlapping stimulation sites within the subthalamic nucleus and its superior border, with different cortical connectivity patterns, associated with maximum improvement in tremor, rigidity and bradykinesia.

  • Improved tractography using asymmetric fibre orientation distributions.

    3 July 2018

    Diffusion MRI allows us to make inferences on the structural organisation of the brain by mapping water diffusion to white matter microstructure. However, such a mapping is generally ill-defined; for instance, diffusion measurements are antipodally symmetric (diffusion along x and -x are equal), whereas the distribution of fibre orientations within a voxel is generally not symmetric. Therefore, different sub-voxel patterns such as crossing, fanning, or sharp bending, cannot be distinguished by fitting a voxel-wise model to the signal. However, asymmetric fibre patterns can potentially be distinguished once spatial information from neighbouring voxels is taken into account. We propose a neighbourhood-constrained spherical deconvolution approach that is capable of inferring asymmetric fibre orientation distributions (A-fods). Importantly, we further design and implement a tractography algorithm that utilises the estimated A-fods, since the commonly used streamline tractography paradigm cannot directly take advantage of the new information. We assess performance using ultra-high resolution histology data where we can compare true orientation distributions against sub-voxel fibre patterns estimated from down-sampled data. Finally, we explore the benefits of A-fods-based tractography using in vivo data by evaluating agreement of tractography predictions with connectivity estimates made using different in-vivo modalities. The proposed approach can reliably estimate complex fibre patterns such as sharp bending and fanning, which voxel-wise approaches cannot estimate. Moreover, histology-based and in-vivo results show that the new framework allows more accurate tractography and reconstruction of maps quantifying (symmetric and asymmetric) fibre complexity.

  • l-Dopa responsiveness is associated with distinctive connectivity patterns in advanced Parkinson's disease.

    2 July 2018

    BACKGROUND: Neuronal loss and dopamine depletion alter motor signal processing between cortical motor areas, basal ganglia, and the thalamus, resulting in the motor manifestations of Parkinson's disease. Dopamine replacement therapy can reverse these manifestations with varying degrees of improvement. METHODS: To evaluate functional connectivity in patients with advanced Parkinson's disease and changes in functional connectivity in relation to the degree of response to l-dopa, 19 patients with advanced Parkinson's disease underwent resting-state functional magnetic resonance imaging in the on-medication state. Scans were obtained on a 3-Tesla scanner in 3 × 3 × 2.5 mm3 voxels. Seed-based bivariate regression analyses were carried out with atlas-defined basal ganglia regions as seeds, to explore relationships between functional connectivity and improvement in the motor section of the UPDRS-III following an l-dopa challenge. False discovery rate-corrected P was set at < 0.05 for a 2-tailed t test. RESULTS: A greater improvement in UPDRS-III scores following l-dopa administration was characterized by higher resting-state functional connectivity between the prefrontal cortex and the striatum (P = 0.001) and lower resting-state functional connectivity between the pallidum (P = 0.001), subthalamic nucleus (P = 0.003), and the paracentral lobule (supplementary motor area, mesial primary motor, and primary sensory areas). CONCLUSIONS: Our findings show characteristic basal ganglia resting-state functional connectivity patterns associated with different degrees of l-dopa responsiveness in patients with advanced Parkinson's disease. l-Dopa exerts a graduated influence on remapping connectivity in distinct motor control networks, potentially explaining some of the variance in treatment response. © 2017 International Parkinson and Movement Disorder Society.

  • Multiple signals in anterior cingulate cortex.

    3 July 2018

    Activity in anterior cingulate cortex (ACC) has been linked both to commitment to a course of action, even when it is associated with costs, and to exploring or searching for alternative courses of action. Here we review evidence that this is due to the presence of multiple signals in ACC reflecting the updating of beliefs and internal models of the environment and encoding aspects of choice value, including the average value of choices afforded by the environment ('search value'). We contrast this evidence with the influential view that ACC activity is better described as reflecting task difficulty. A consideration of cortical neural network properties explains why ACC may carry such signals and also exhibit sensitivity to task difficulty.

  • Inhibitory engrams in perception and memory.

    3 July 2018

    Nervous systems use excitatory cell assemblies to encode and represent sensory percepts. Similarly, synaptically connected cell assemblies or "engrams" are thought to represent memories of past experience. Multiple lines of recent evidence indicate that brain systems create and use inhibitory replicas of excitatory representations for important cognitive functions. Such matched "inhibitory engrams" can form through homeostatic potentiation of inhibition onto postsynaptic cells that show increased levels of excitation. Inhibitory engrams can reduce behavioral responses to familiar stimuli, thereby resulting in behavioral habituation. In addition, by preventing inappropriate activation of excitatory memory engrams, inhibitory engrams can make memories quiescent, stored in a latent form that is available for context-relevant activation. In neural networks with balanced excitatory and inhibitory engrams, the release of innate responses and recall of associative memories can occur through focused disinhibition. Understanding mechanisms that regulate the formation and expression of inhibitory engrams in vivo may help not only to explain key features of cognition but also to provide insight into transdiagnostic traits associated with psychiatric conditions such as autism, schizophrenia, and posttraumatic stress disorder.

  • Uncoupling protein 2 haplotype does not affect human brain structure and function in a sample of community-dwelling older adults.

    3 July 2018

    Uncoupling protein 2 (UCP2) is a mitochondrial membrane protein that plays a role in uncoupling electron transport from adenosine triphosphate (ATP) formation. Polymorphisms of the UCP2 gene in humans affect protein expression and function and have been linked to survival into old age. Since UCP2 is expressed in several brain regions, we investigated in this study whether UCP2 polymorphisms might 1) affect occurrence of neurodegenerative or mental health disorders and 2) affect measures of brain structure and function. We used structural magnetic resonance imaging (MRI), diffusion-weighted MRI and resting-state functional MRI in the neuroimaging sub-study of the Whitehall II cohort. Data from 536 individuals aged 60 to 83 years were analyzed. No association of UCP2 polymorphisms with the occurrence of neurodegenerative disorders or grey and white matter structure or resting-state functional connectivity was observed. However, there was a significant effect on occurrence of mood disorders in men with the minor alleles of -866G>A (rs659366) and Ala55Val (rs660339)) being associated with increasing odds of lifetime occurrence of mood disorders in a dose dependent manner. This result was not accompanied by effects of UCP2 polymorphisms on brain structure and function, which might either indicate that the sample investigated here was too small and underpowered to find any significant effects, or that potential effects of UCP2 polymorphisms on the brain are too subtle to be picked up by any of the neuroimaging measures used.

  • PET Tau and Amyloid-β Burden in Mild Alzheimer's Disease: Divergent Relationship with Age, Cognition, and Cerebrospinal Fluid Biomarkers.

    3 July 2018

    BACKGROUND: Combining PET amyloid-β (Aβ) and tau imaging may be critical for tracking disease progression in Alzheimer's disease (AD). OBJECTIVE: We sought to characterize the relationship between Aβ and tau ligands as well as with other measures of pathology. METHODS: We conducted a multi-center observational study in early AD (MMSE >20) participants aged 50 to 85 y. The schedule included cognitive assessments (ADAS-Cog) and CSF measurement of Aβ and tau at baseline and 6 months; PET-CT imaging with Aβ ([18F]AV45) and tau ([18F]AV1451) ligands at baseline. RESULTS: 22 participants took part in the study with 20 completing its 6-month duration and 12 having both tau and amyloid PET. The PET biomarker analysis revealed a strong negative correlation between age and tau in multiple regions. Entorhinal cortex tau and age interacted significantly in terms of cognitive change over 6 months which may have been to older participants deteriorating faster despite lower levels of cortical tau. Cortical Aβ associated with entorhinal cortex tau while CSF tau/Aβ ratio correlated strongly with cortical tau but not Aβ. CONCLUSION: The negative relationship between age and cortical tau whereby younger patients with mild AD had relatively greater tau burden is potentially important. It suggests that younger-age onset AD may be primarily driven by tau pathology while AD developing later may depend on a multitude of pathological mechanisms. These data also suggest that PET-tau performs better than PET-amyloid in predicting the best validated AD diagnostic marker- the CSF total tau/Aβ ratio.

  • Improving data availability for brain image biobanking in healthy subjects: Practice-based suggestions from an international multidisciplinary working group.

    3 July 2018

    Brain imaging is now ubiquitous in clinical practice and research. The case for bringing together large amounts of image data from well-characterised healthy subjects and those with a range of common brain diseases across the life course is now compelling. This report follows a meeting of international experts from multiple disciplines, all interested in brain image biobanking. The meeting included neuroimaging experts (clinical and non-clinical), computer scientists, epidemiologists, clinicians, ethicists, and lawyers involved in creating brain image banks. The meeting followed a structured format to discuss current and emerging brain image banks; applications such as atlases; conceptual and statistical problems (e.g. defining 'normality'); legal, ethical and technological issues (e.g. consents, potential for data linkage, data security, harmonisation, data storage and enabling of research data sharing). We summarise the lessons learned from the experiences of a wide range of individual image banks, and provide practical recommendations to enhance creation, use and reuse of neuroimaging data. Our aim is to maximise the benefit of the image data, provided voluntarily by research participants and funded by many organisations, for human health. Our ultimate vision is of a federated network of brain image biobanks accessible for large studies of brain structure and function.

  • Neurodegeneration and Inflammation Research Group

    15 January 2013

    DCN

    We explore the neuropathology of multiple sclerosis and other inflammatory and neurodegenerative diseases using a multidisciplinary team approach to post-mortem brain and spinal cord tissue. The aim is that the understanding derived from these studies will translate into ideas for improved treatments for living patients.

  • Experimental Neurology

    15 January 2013

    DCN

    Our goal is to define how activity in large populations of neurons is coordinated in healthy movement and how such coordination may go awry in diseases, translating this information in to improved treatment for Parkinson’s Disease and other disorders of movement.

  • Neuromuscular Disorders

    15 January 2013

    DCN

    We work to translate an understanding of the molecular mechanisms of disease at the neuromuscular synapse into treatments. Our work led us to be commissioned to provide a National Advisory and Diagnostic Service for congenital myasthenic syndromes.

  • Neural Injury Group

    19 February 2013

    DCN

    Our aim is to gain a better understanding of the response of the peripheral nervous system to injury in order to develop strategies to promote peripheral nerve repair and to prevent the development of neuropathic pain. To do this we employ a variety of multi-disciplinary techniques ranging from transgenic models to human psychophysical studies and genetics.

  • Pain, Palliative and Supportive Care (PaPaS) Review Group

    15 January 2013

    NDA

    The Cochrane Pain, Palliative and Supportive Care (PaPaS) Review Group is based at the Oxford Pain Relief Unit, Churchill Hospital.

  • Oxford Respiratory Group

    15 January 2013

    NDA

    The Oxford Respiratory Group works collaboratively on a range of projects dedicated to Respiratory Control. Professor Pandit's group studies anaesthetic effects on oxygen sensing and also focusses on clinical research related to effects of anaesthetics on respiration and anaesthetic techniques on the lungs and airway.

  • Oxford Airway Group

    15 January 2013

    NDA

    We strive to continually improve airway management in anaesthesia with a focus on minimising risk associated with difficult airways.

  • Circadian and Visual Neuroscience (Foster)

    15 January 2013

    NLO

    Our research interests range across the neurosciences but with specific interests in circadian, visual and behavioural neuroscience.

  • Circadian and Visual Neuroscience (Peirson)

    15 January 2013

    NLO

    Our research focuses on the non-image forming function of the eye, including how the light environment regulates sleep and circadian rhythms and how these responses are affected in disease.