Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Cerebellar Asymmetry and Cortical Connectivity in Monozygotic Twins with Discordant Handedness

    22 December 2017

    © 2017 The Author(s) Handedness differentiates patterns of neural asymmetry and interhemispheric connectivity in cortical systems that underpin manual and language functions. Contemporary models of cerebellar function incorporate complex motor behaviour and higher-order cognition, expanding upon earlier, traditional associations between the cerebellum and motor control. Structural MRI defined cerebellar volume asymmetries and correlations with corpus callosum (CC) size were compared in 19 pairs of adult female monozygotic twins strongly discordant for handedness (MZHd). Volume and asymmetry of cerebellar lobules were obtained using automated parcellation.CC area and regional widths were obtained from midsagittal planimetric measurements. Within the cerebellum and CC, neurofunctional distinctions were drawn between motor and higher-order cognitive systems. Relationships amongst regional cerebellar asymmetry and cortical connectivity (as indicated by CC widths) were investigated. Interactions between hemisphere and handedness in the anterior cerebellum were due to a larger right-greater-than-left hemispheric asymmetry in right-handed (RH) compared to left-handed (LH) twins. In LH twins only, anterior cerebellar lobule volumes (IV, V) for motor control were associated with CC size, particularly in callosal regions associated with motor cortex connectivity. Superior posterior cerebellar lobule volumes (VI, Crus I, Crus II, VIIb) showed no correlation with CC size in either handedness group. These novel results reflected distinct patterns of cerebellar-cortical relationships delineated by specific CC regions and an anterior-posterior cerebellar topographical mapping. Hence, anterior cerebellar asymmetry may contribute to the greater degree of bilateral cortical organisation of frontal motor function in LH individuals.

  • Full simulation of the LUCID experiment in the Low Earth Orbit radiation environment

    26 December 2017

    © 2015 IOP Publishing Ltd and Sissa Medialab srl. The Langton Ultimate Cosmic ray Intensity Detector (LUCID) experiment is a satellite-based device that uses five Timepix hybrid silicon pixel detectors to make measurements of the radiation environment at an altitude of approximately 630 km, i.e. in Low Earth Orbit (LEO). The experiment launched aboard Surrey Satellite Technology Limited's (SSTL's) TechDemoSat-1 on Tuesday the 8th of July 2014. The Timepix detectors, developed by the Medipix2 Collaboration, are arranged to form the five sides of a cube enclosed by a 0.7 mm thick aluminium covering, and are operated in Time-over-Threshold (ToT) mode to allow the flux, energy and directionality of incident ionising radiation to be measured. To understand the expected detector performance with respect to these measurements, the LUCID experiment has been modelled using the Allpix software package, a generic simulation toolkit for silicon pixel detectors built upon the GEANT4 framework. The work presented here summarises studies completed using the GridPP Collaboration's computing grid infrastructure to perform the simulations, store the resultant datasets, and share that data with the LUCID Collaboration. The analysis of these datasets has given an indication of the expected performance in differing space radiation environments (for example, during passes of the polar regions or the South Atlantic Anomaly), and has allowed the LUCID Collaboration to prepare for when data is transmitted back to Earth in late 2014.

  • Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy

    16 March 2018

    © 2011 CMS Collaboration A search for supersymmetry with R-parity conservation in proton–proton collisions at a centre-of-mass energy of 7 TeV is presented. The data correspond to an integrated luminosity of 35 pb −1 collected by the CMS experiment at the LHC. The search is performed in events with jets and significant missing transverse energy, characteristic of the decays of heavy, pair-produced squarks and gluinos. The primary background, from standard model multijet production, is reduced by several orders of magnitude to a negligible level by the application of a set of robust kinematic requirements. With this selection, the data are consistent with the standard model backgrounds, namely tt¯, W + jet and Z + jet production, which are estimated from data control samples. Limits are set on the parameters of the constrained minimal supersymmetric extension of the standard model. These limits extend those set previously by experiments at the Tevatron and LEP colliders.

  • Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC.

    21 March 2018

    MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.

  • CERN@School: Forming Nationwide Collaborations for Physics Research in Schools

    30 November 2017

    © , Copyright Taylor & Francis. CERN@school is a program that brings CERN, the European Organisation for Nuclear Research, into the classroom. By supplying schools with cutting-edge detector technology and giving them access to the Worldwide LHC Computing Grid, students in the United Kingdom are being offered the opportunity to conduct authentic research in the field of nuclear and particle physics. Thanks to the support of the Science and Technology and Facilities Council (STFC), the Royal Commission for the Exhibition of 1851, and the Institute of Physics, the program has resulted in a nationwide network of student scientists working together to conduct a number of research projects. This article looks at how CERN@school has achieved this, some of the ongoing experiments, and the potential for rolling out the approach across the world.

  • The CMS Collaboration

    26 February 2018

  • Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    12 March 2018

    © 2016, The Author(s). The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nucleartrack detectors with surface area ~18m 2 , sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb –1 . No magnetic charge exceeding 0:5g D (where g D is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV≤ m ≤ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1g D ≤ |g| ≤ 6g D , and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1g D ≤ |g| ≤ 4g D . Under the assumption of Drell-Yan cross sections, mass limits are derived for |g| = 2g D and |g| = 3g D for the first time at the LHC, surpassing the results from previous collider experiments.

  • CERN@school: Bringing CERN into the classroom

    28 January 2018

    © 2015 Elsevier B.V. CERN@school brings technology from CERN into the classroom to aid with the teaching of particle physics. It also aims to inspire the next generation of physicists and engineers by giving participants the opportunity to be part of a national collaboration of students, teachers and academics, analysing data obtained from detectors based on the ground and in space to make new, curiosity-driven discoveries at school. CERN@school is based around the Timepix hybrid silicon pixel detector developed by the Medipix 2 Collaboration, which features a 300 μm thick silicon sensor bump-bonded to a Timepix readout ASIC. This defines a 256-by-256 grid of pixels with a pitch of 55 μm, the data from which can be used to visualise ionising radiation in a very accessible way. Broadly speaking, CERN@school consists of a web portal that allows access to data collected by the Langton Ultimate Cosmic ray Intensity Detector (LUCID) experiment in space and the student-operated Timepix detectors on the ground; a number of Timepix detector kits for ground-based experiments, to be made available to schools for both teaching and research purposes; and educational resources for teachers to use with LUCID data and detector kits in the classroom. By providing access to cutting-edge research equipment, raw data from ground and space-based experiments, CERN@school hopes to provide the foundation for a programme that meets the many of the aims and objectives of CERN and the project's supporting academic and industrial partners. The work presented here provides an update on the status of the programme as supported by the UK Science and Technology Facilities Council (STFC) and the Royal Commission for the Exhibition of 1851. This includes recent results from work with the GridPP Collaboration on using grid resources with schools to run GEANT4 simulations of CERN@school experiments.

  • CERN@school: demonstrating physics with the Timepix detector

    12 December 2017

    © 2015 Taylor & Francis. This article shows how the Timepix hybrid silicon pixel detector, developed by the Medipix2 Collaboration, can be used by students and teachers alike to demonstrate some key aspects of any well-rounded physics curriculum with CERN@school. After an overview of the programme, the detector’s capabilities for measuring and visualising ionising radiation are examined. The classification of clusters – groups of adjacent pixels – is discussed with respect to identifying the different types of particles. Three demonstration experiments – background radiation measurements, radiation profiles and the attenuation of radiation – are described; these can used as part of lessons or as inspiration for independent research projects. Results for exemplar data-sets are presented for reference, as well as details of ongoing research projects inspired by these experiments. Interested readers are encouraged to join the CERN@school Collaboration and so contribute to achieving the progra mme’s aim of inspiring the next generation of scientists and engineers.

  • Length of carotid stenosis predicts peri-procedural stroke or death and restenosis in patients randomized to endovascular treatment or endarterectomy.

    20 March 2018

    BACKGROUND: The anatomy of carotid stenosis may influence the outcome of endovascular treatment or carotid endarterectomy. Whether anatomy favors one treatment over the other in terms of safety or efficacy has not been investigated in randomized trials. METHODS: In 414 patients with mostly symptomatic carotid stenosis randomized to endovascular treatment (angioplasty or stenting; n = 213) or carotid endarterectomy (n = 211) in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS), the degree and length of stenosis and plaque surface irregularity were assessed on baseline intraarterial angiography. Outcome measures were stroke or death occurring between randomization and 30 days after treatment, and ipsilateral stroke and restenosis ≥50% during follow-up. RESULTS: Carotid stenosis longer than 0.65 times the common carotid artery diameter was associated with increased risk of peri-procedural stroke or death after both endovascular treatment [odds ratio 2.79 (1.17-6.65), P = 0.02] and carotid endarterectomy [2.43 (1.03-5.73), P = 0.04], and with increased long-term risk of restenosis in endovascular treatment [hazard ratio 1.68 (1.12-2.53), P = 0.01]. The excess in restenosis after endovascular treatment compared with carotid endarterectomy was significantly greater in patients with long stenosis than with short stenosis at baseline (interaction P = 0.003). Results remained significant after multivariate adjustment. No associations were found for degree of stenosis and plaque surface. CONCLUSIONS: Increasing stenosis length is an independent risk factor for peri-procedural stroke or death in endovascular treatment and carotid endarterectomy, without favoring one treatment over the other. However, the excess restenosis rate after endovascular treatment compared with carotid endarterectomy increases with longer stenosis at baseline. Stenosis length merits further investigation in carotid revascularisation trials.


    26 August 2016


    The Oxford Project to Investigate Memory and Ageing (OPTIMA) started in 1988 and the last LEAD participants were seen in March 2015. We are no longer recruiting to any of the cohorts. However, we are currently creating the OPTIMA Legacy Resource from which data collected from the OPTIMA cohorts is available and samples are biobanked and available. Brain tissue is available as part of the Brains For Dementia Research (BDR) collection.

  • Models of Brain Decision Networks

    21 July 2014


    Our group uses computer simulations and mathematical analyses to understand the information processing and activity dynamics of brain networks underlying decision making. We use these models to investigate how neural circuits work in the healthy state, how their dynamics deteriorate in neurological disorders, and how their dynamics and information processing may be best restored by treatments.

  • Translational Molecular Neuroscience Group

    14 February 2018


    Drug discovery in neuroscience is very challenging but the need is greater than ever. Perhaps the most important factor for successfully developing an effective therapy, is the identification of human disease relevant drug targets. Our group aims to elucidate the pathophysiological basis of human neurological disorders from genetic molecular networks to complex neural systems using human genetics, human models and human tissue wherever possible.

  • Congenital Myasthenia Service

    15 January 2013


    We provide a nationally commissioned specialised service for the diagnosis and management of children and adults in whom a congenital myasthenic syndrome is suspected.

  • Breathe Oxford

    13 May 2014


  • Oxford Epilepsy Research Group

    2 April 2014


    We are a forward-looking dynamic group interested in all aspects of clinical and experimental epileptology with an emphasis on clinically relevant research. The Group draws together all relevant disciplines across Oxford University Hospitals and the University of Oxford.