Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Does amifostine reduce metabolic rate? Effect of the drug on gas exchange and acute ventilatory hypoxic response in humans.

    24 October 2018

    Amifostine is added to chemoradiation regimens in the treatment of many cancers on the basis that, by reducing the metabolic rate, it protects normal cells from toxic effects of therapy. We tested this hypothesis by measuring the metabolic rate (by gas exchange) over 255 min in 6 healthy subjects, at two doses (500 mg and 1000 mg) of amifostine infused over 15 min at the start of the protocol. We also assessed the ventilatory response to six 1 min exposures to isocapnic hypoxia mid-protocol. There was no change in metabolic rate with amifostine as measured by oxygen uptake (p = 0.113). However in carbon dioxide output and respiratory quotient, we detected a small decline over time in control and drug protocols, consistent with a gradual change from carbohydrate to fat metabolism over the course of the relatively long study protocol. A novel result was that amifostine (1000 mg) increased the mean ± SD acute hypoxic ventilatory response from 12.4 ± 5.1 L/min to 20.3 ± 11.9 L/min (p = 0.045). In conclusion, any cellular protective effects of amifostine are unlikely due to metabolic effects. The stimulatory effect on hypoxic ventilatory responses may be due to increased levels of hypoxia inducible factor, either peripherally in the carotid body, or centrally in the brain.

  • A review of the physics of ice surface friction and the development of ice skating.

    24 October 2018

    Our walking and running movement patterns require friction between shoes and ground. The surface of ice is characterised by low friction in several naturally occurring conditions, and compromises our typical locomotion pattern. Ice skates take advantage of this slippery nature of ice; the first ice skates were made more than 4000 years ago, and afforded the development of a very efficient form of human locomotion. This review presents an overview of the physics of ice surface friction, and discusses the most relevant factors that can influence ice skates' dynamic friction coefficient. It also presents the main stages in the development of ice skating, describes the associated implications for exercise physiology, and shows the extent to which ice skating performance improved through history. This article illustrates how technical and materials' development, together with empirical understanding of muscle biomechanics and energetics, led to one of the fastest forms of human powered locomotion.

  • The peripheral actions of the central neuropeptide somatostatin on control of breathing: effect on metabolic rate and chemoreflex responses in humans.

    24 October 2018

    Peripherally infused somatostatin in humans reduces the acute ventilatory response to hypoxia but it is not known if it reduces basal minute ventilation, and there are conflicting results as to whether or not it reduces the acute hypercapnic ventilatory response. One explanatory mechanism for all these possible effects is that somatostatin reduces metabolic rate. We therefore tested the hypothesis that somatostatin can reduce whole-body metabolic rate (measured by gas exchange at the mouth) in a manner that (a) reduces basal minute ventilation, (b) reduces ventilatory response to acute hypoxia, and (c) reduces ventilatory response to acute hypercapnia. Seven healthy volunteers underwent two protocols, one with saline control and one with somatostatin infusion (0.5mg/h) consisting of a 15-min period of resting breathing (end-tidal [Formula: see text] held at 100Torr with background isocapnia) followed by 5min of isocapnic hypoxia (end-tidal [Formula: see text] 50Torr), and after 1min euoxic recovery, 5min of euoxic hypercapnia (end-tidal [Formula: see text] 45Torr), followed by recovery. Somatostatin modestly but significantly (p<0.05) reduced CO2 output, but not O2 uptake. However, somatostatin did not change basal minute ventilation. Acute hypoxic ventilatory response was greatly reduced by 82% and acute hypercapnic ventilatory response by 26% (p<0.05). We conclude that while somatostatin does influence metabolism, this effect is too subtle to explain the large reduction in chemoreflex activity, which is more likely due to direct effects of the drug on the carotid body.

  • Variations in alveolar partial pressure for carbon dioxide and oxygen have additive not synergistic acute effects on human pulmonary vasoconstriction.

    24 October 2018

    The human pulmonary vasculature constricts in response to hypercapnia and hypoxia, with important consequences for homeostasis and adaptation. One function of these responses is to direct blood flow away from poorly-ventilated regions of the lung. In humans it is not known whether the stimuli of hypercapnia and hypoxia constrict the pulmonary blood vessels independently of each other or whether they act synergistically, such that the combination of hypercapnia and hypoxia is more effective than the sum of the responses to each stimulus on its own. We independently controlled the alveolar partial pressures of carbon dioxide (Paco 2) and oxygen (Pao 2) to examine their possible interaction on human pulmonary vasoconstriction. Nine volunteers each experienced sixteen possible combinations of four levels of Paco 2 (+6, +1, -4 and -9 mmHg, relative to baseline) with four levels of Pao 2 (175, 100, 75 and 50 mmHg). During each of these sixteen protocols Doppler echocardiography was used to evaluate cardiac output and systolic tricuspid pressure gradient, an index of pulmonary vasoconstriction. The degree of constriction varied linearly with both Paco 2 and the calculated haemoglobin oxygen desaturation (1-So2). Mixed effects modelling delivered coefficients defining the interdependence of cardiac output, systolic tricuspid pressure gradient, ventilation, Paco 2 and So2. No interaction was observed in the effects on pulmonary vasoconstriction of carbon dioxide and oxygen (p>0.64). Direct effects of the alveolar gases on systolic tricuspid pressure gradient greatly exceeded indirect effects arising from concurrent changes in cardiac output.

  • Human locomotion on ice: the evolution of ice-skating energetics through history.

    24 October 2018

    More than 3000 years ago, peoples living in the cold North European regions started developing tools such as ice skates that allowed them to travel on frozen lakes. We show here which technical and technological changes determined the main steps in the evolution of ice-skating performance over its long history. An in-depth historical research helped identify the skates displaying significantly different features from previous models and that could consequently determine a better performance in terms of speed and energy demand. Five pairs of ice skates were tested, from the bone-skates, dated about 1800 BC, to modern ones. This paper provides evidence for the fact that the metabolic cost of locomotion on ice decreased dramatically through history, the metabolic cost of modern ice-skating being only 25% of that associated with the use of bone-skates. Moreover, for the same metabolic power, nowadays skaters can achieve speeds four times higher than their ancestors could. In the range of speeds considered, the cost of travelling on ice was speed independent for each skate model, as for running. This latter finding, combined with the accepted relationship between time of exhaustion and the sustainable fraction of metabolic power, gives the opportunity to estimate the maximum skating speed according to the distance travelled. Ice skates were probably the first human powered locomotion tools to take the maximum advantage from the biomechanical properties of the muscular system: even when travelling at relatively high speeds, the skating movement pattern required muscles to shorten slowly so that they could also develop a considerable amount of force.

  • A common perceptual parameter for stair climbing for children, young and old adults.

    24 October 2018

    In this paper we examine whether a common perceptual parameter is available for guiding old adults, young adults and children in climbing the highest stair mountable in a bipedal fashion. Previous works have shown that the ratio between the height of the stair and the hip height was the body-scaled invariance adopted as information for selecting the highest stair by young adults [Journal of Experimental Psychology: Human Perception and Performance 10 (1984) 683-703] but not by older adults [Journal of Experimental Psychology: Human Perception and Performance 3 (1992) 691-697]. Indeed, for older adults additional bio-mechanical parameters needed to be added to the model due to their decrease in leg strength and flexibility.Up to now, no perceptual invariant has been identified yet for determining the relevant information used for guiding the stair climbing action for normal healthy people. We propose a new parameter as the angle defined by the ratio between the height of the stair and the distance taken from the feet to the top edge of the stair before the initiation of the movement. We show that this angle is the same for children, young adults and older adults despite the different kinematics of the motion, the anthropometrics and the skill ability exhibit by the participants. In summary we show that even when the climbability judgments, based on the simple ratio leg length-stair height, are influenced by differences in age, participants use a common perceptual variable when they are coordinating their stair climbing action.