Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Task-irrelevant financial losses inhibit the removal of information from working memory.

    19 February 2019

    The receipt of financial rewards or penalties - though task-irrelevant - may exert an obligatory effect on manipulating items in working memory (WM) by constraining a forthcoming shift in attention or reinforcing attentional shifts that have previously occurred. Here, we adjudicate between these two hypotheses by varying - after encoding- the order in which task-irrelevant financial outcomes and cues indicating which items need to be retained in memory are presented (so called retrocues). We employed a "what-is-where" design that allowed for the fractionation of WM recall into separate components: identification, precision and binding (between location and identity). Principally, valence-dependent effects were observed only for precision and binding, but only when outcomes were presented before, rather than after, the retrocue. Specifically, task-irrelevant financial losses presented before the retrocue caused a systematic breakdown in binding (misbinding), whereby the features of cued and non-cued memoranda became confused, i.e., the features that made up relevant memoranda were displaced by those of non-cued (irrelevant) items. A control experiment, in which outcomes but no cues were presented, failed to produce the same effects, indicating that the inclusion of retrocues were necessary for generating this effect. These results show that the receipt of financial penalties - even when uncoupled to performance - can prevent irrelevant information from being effectively pruned from WM. These results illustrate the importance of reward-related processing to controlling the contents of WM.

  • Thalamic-Caudal Zona Incerta Deep Brain Stimulation for Refractory Orthostatic Tremor: A Report of 3 Cases.

    19 February 2019

    Orthostatic tremor (OT) is a rare, disabling movement disorder characterized by the development of a high-frequency tremor of the lower limbs and feelings of unsteadiness upon standing, which compel the patient to sit down or walk. Medical therapy is often unsatisfactory. Previous reports suggest that deep brain stimulation of the ventral intermediate nucleus of the thalamus may improve clinical outcomes. The authors report 3 patients who had intractable orthostatic tremor treated with bilateral deep brain stimulation of the ventral intermediate nucleus of the thalamus-caudal zona incerta, resulting in improved and sustained clinical improvements in symptoms, although there were no apparent changes in the underlying tremor frequency or onset.

  • Resting Tremor Detection in Parkinson's Disease with Machine Learning and Kalman Filtering

    19 February 2019

    © 2018 IEEE. Adaptive deep brain stimulation (aDBS) is an emerging method to alleviate the side effects and improve the efficacy of conventional open-loop stimulation for movement disorders. However, current adaptive DBS techniques are primarily based on single-feature thresholding, precluding an optimized delivery of stimulation for precise control of motor symptoms. Here, we propose to use a machine learning approach for resting-state tremor detection from local field potentials (LFPs) recorded from subthalamic nucleus (STN) in 12 Parkinson's patients. We compare the performance of state-of-the-art classifiers and LFP-based biomarkers for tremor detection, showing that the high-frequency oscillations and Hjorth parameters achieve a high discriminative performance. In addition, using Kalman filtering in the feature space, we show that the tremor detection performance significantly improves (F(1,15)=32.16, p<0.0001). The proposed method holds great promise for efficient on-demand delivery of stimulation in Parkinson's disease.

  • Corrigendum

    21 February 2019

  • Myelin oligodendrocyte glycoprotein antibodies in neurological disease.

    19 February 2019

    Anti-myelin oligodendrocyte glycoprotein (MOG) antibodies (MOG-Abs) were first detected by immunoblot and enzyme-linked immunosorbent assay nearly 30 years ago, but their association with multiple sclerosis (MS) was not specific. Use of cell-based assays with native MOG as the substrate enabled identification of a group of MOG-Ab-positive patients with demyelinating phenotypes. Initially, MOG-Abs were reported in children with acute disseminated encephalomyelitis (ADEM). Further studies identified MOG-Abs in adults and children with ADEM, seizures, encephalitis, anti-aquaporin-4-antibody (AQP4-Ab)-seronegative neuromyelitis optica spectrum disorder (NMOSD) and related syndromes (optic neuritis, myelitis and brainstem encephalitis), but rarely in MS. This shift in our understanding of the diagnostic assays has re-invigorated the examination of MOG-Abs and their role in autoimmune and demyelinating disorders of the CNS. The clinical phenotypes, disease courses and responses to treatment that are associated with MOG-Abs are currently being defined. MOG-Ab-associated disease is different to AQP4-Ab-positive NMOSD and MS. This Review provides an overview of the current knowledge of MOG, the metrics of MOG-Ab assays and the clinical associations identified. We collate the data on antibody pathogenicity and the mechanisms that are thought to underlie this. We also highlight differences between MOG-Ab-associated disease, NMOSD and MS, and describe our current understanding on how best to treat MOG-Ab-associated disease.

  • Time-Dependent, HIV-Tat-Induced Perturbation of Human Neurons In Vitro: Towards a Model for the Molecular Pathology of HIV-Associated Neurocognitive Disorders.

    5 November 2018

    A significant proportion of human immunodeficiency virus type 1 (HIV)-positive individuals are affected by the cognitive, motor and behavioral dysfunction that characterizes HIV-associated neurocognitive disorders (HAND). While the molecular etiology of HAND remains largely uncharacterized, HIV transactivator of transcription (HIV-Tat) is thought to be an important etiological cause. Here we have used mass spectrometry (MS)-based discovery proteomics to identify the quantitative, cell-wide changes that occur when non-transformed, differentiated human neurons are treated with HIV-Tat over time. We identified over 4000 protein groups (false discovery rate <0.01) in this system with 131, 118 and 45 protein groups differentially expressed at 6, 24 and 48 h post treatment, respectively. Alterations in the expression of proteins involved in gene expression and cytoskeletal maintenance were particularly evident. In tandem with proteomic evidence of cytoskeletal dysregulation we observed HIV-Tat induced functional alterations, including a reduction of neuronal intrinsic excitability as assessed by patch-clamp electrophysiology. Our findings may be relevant for understanding in vivo molecular mechanisms in HAND.

  • Ion dynamics during seizures.

    5 November 2018

    Changes in membrane voltage brought about by ion fluxes through voltage and transmitter-gated channels represent the basis of neural activity. As such, electrochemical gradients across the membrane determine the direction and driving force for the flow of ions and are therefore crucial in setting the properties of synaptic transmission and signal propagation. Ion concentration gradients are established by a variety of mechanisms, including specialized transporter proteins. However, transmembrane gradients can be affected by ionic fluxes through channels during periods of elevated neural activity, which in turn are predicted to influence the properties of on-going synaptic transmission. Such activity-induced changes to ion concentration gradients are a feature of both physiological and pathological neural processes. An epileptic seizure is an example of severely perturbed neural activity, which is accompanied by pronounced changes in intracellular and extracellular ion concentrations. Appreciating the factors that contribute to these ion dynamics is critical if we are to understand how a seizure event evolves and is sustained and terminated by neural tissue. Indeed, this issue is of significant clinical importance as status epilepticus-a type of seizure that does not stop of its own accord-is a life-threatening medical emergency. In this review we explore how the transmembrane concentration gradient of the six major ions (K(+), Na(+), Cl(-), Ca(2+), H(+)and [Formula: see text]) is altered during an epileptic seizure. We will first examine each ion individually, before describing how multiple interacting mechanisms between ions might contribute to concentration changes and whether these act to prolong or terminate epileptic activity. In doing so, we will consider how the availability of experimental techniques has both advanced and restricted our ability to study these phenomena.