Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Research by Jacinta O’Shea reveals the striking potential of brain stimulation to cause long-lasting improvements in stroke patients’ attention deficits.

The patient was asked to distribute flowers equally around the garden. They are all clumped to the right, showing dramatic neglect of left space.

Every year thousands of people are left with debilitating symptoms after stroke. Perhaps one of the most striking is known as hemispatial neglect. This is when right-sided brain damage causes people to behave as though the left half of the world does not exist.

This problem arises when damage to the right parietal cortex disrupts the connections linking visual areas at the back of the brain with motor systems towards the front. The damage leaves the stroke survivor unable to voluntarily direct attention towards, and act on, visual objects in the space to their left.

Hemispatial neglect is very common, affecting many patients in the early months after stroke. Most recover over time, but about one-third do not, and suffer neglect as a lasting disabling condition.

Read more on the Oxford Science Blog.

Similar stories

Bioelectronic implant offers an intelligent therapy to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their 'smart' bioelectronic implants.

Direct evidence of reduced NMDA receptors in people with form of encephalitis

NMDAR-antibody encephalitis is an autoimmune brain condition caused by patient’s own antibodies that bind to NMDA (N-Methyl-D-Aspartate) receptors in the synapses between nerve cells.

Director of MRC Brain Network Dynamics Unit appointed

From 2 January 2023, Professor Peter Magill will lead the Medical Research Council Brain Network Dynamics Unit (MRC BNDU) at the University of Oxford.

Study reveals association between diagnosis of a neuropsychiatric condition and severe outcome from COVID-19 infection, and other severe acute respiratory infections

New research from the University of Oxford has shown an increased risk of severe illness and death from both COVID-19 and other severe respiratory infections, such as influenza and pneumonia, among people with a pre-existing mental health condition.

New study shows clinical symptoms for Alzheimer’s can be predicted in preclinical models

Establishing preclinical models of Alzheimer’s that reflect in-life clinical symptoms of each individual is a critically important goal, yet so far it has not been fully realised. A new collaborative study from the University of Oxford has demonstrated that clinical vulnerability to an abnormally abundant protein in Alzheimer’s brain is in fact reflected in individual patient induced pluripotent stem cell-derived cortical neurons.