Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Overview of genes linked to early and late onset myasthenia gravis

Myasthenia gravis is a debilitating autoimmune disorder that manifests clinically as muscle weakness and fatigability. Early and late onset forms of myasthenia gravis have distinct epidemiological and pathological characteristics. However, little is known about the immunological mechanisms that lead to the development of autoantibodies against the acetylcholine receptor in the majority of these patients.

In a new study led by Dr Lahiru Handunnetthi (Academic Clinical Lecturer at NDCN), a team of researchers used cutting-edge genomic methodology to identify disease-relevant genes. The methodology integrated genome-wide study findings with cell-type-specific information such as gene expression patterns and promotor-enhancer interactions. This approach shed light on the underlying mechanisms for early and late forms of myasthenia gravis.

The genes prioritised in this study highlight several key differences in the immunological pathways between early and late onset myasthenia gravis. The researchers identified a unique role for the innate immune system in early onset disease, whereas they found multiple layers of evidence for T-cell pathways in late onset disease. Furthermore, the researchers demonstrated for the first time that causal genetic variants linked to late onset disease result in low expression of CTLA4 in CD4+ T-cells.

The disease-relevant genes identified in this study are a unique resource for clinicians, scientists and the pharmaceutical industry. The distinct immunological pathways linked to early and late onset myasthenia gravis carry important implications for repurposing existing drugs, and for future drug development.

The researchers plan to carry out further studies at single cell level with the help of funding from the Human Immune Discovery Initiative. They are also working towards early preclinical studies to help target existing and novel therapeutic agents for early and late forms of myasthenia gravis. 

This work was carried out in collaboration with Professor Julian Knight at the Wellcome Centre for Human Genetics and Professor Sarosh Irani from NDCN as well as others from the Wellcome Sanger Institute and Estonian Genome Centre.

Read the full paper in Annals of Neurology

Similar stories

Bioelectronic implant offers an intelligent therapy to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their 'smart' bioelectronic implants.

Direct evidence of reduced NMDA receptors in people with form of encephalitis

NMDAR-antibody encephalitis is an autoimmune brain condition caused by patient’s own antibodies that bind to NMDA (N-Methyl-D-Aspartate) receptors in the synapses between nerve cells.

Director of MRC Brain Network Dynamics Unit appointed

From 2 January 2023, Professor Peter Magill will lead the Medical Research Council Brain Network Dynamics Unit (MRC BNDU) at the University of Oxford.

Study reveals association between diagnosis of a neuropsychiatric condition and severe outcome from COVID-19 infection, and other severe acute respiratory infections

New research from the University of Oxford has shown an increased risk of severe illness and death from both COVID-19 and other severe respiratory infections, such as influenza and pneumonia, among people with a pre-existing mental health condition.

New study shows clinical symptoms for Alzheimer’s can be predicted in preclinical models

Establishing preclinical models of Alzheimer’s that reflect in-life clinical symptoms of each individual is a critically important goal, yet so far it has not been fully realised. A new collaborative study from the University of Oxford has demonstrated that clinical vulnerability to an abnormally abundant protein in Alzheimer’s brain is in fact reflected in individual patient induced pluripotent stem cell-derived cortical neurons.