Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BBC Radio 4 presenter Sarah Montague, with input from Professor Russell Foster, investigates how working when most people are sleeping affects our bodies.

If the body clock is disrupted, Sarah discovers, our organs don't function properly and we can't control our metabolism. There's evidence to suggest that nightshift workers have a higher incidence of diabetes, heart disease and some cancers.

Listen on BBC iPlayer

The assumption has always been that our bodies adapt to the nightshift. But now neuroscience is beginning to unravel the fundamental mechanism of sleep...and the extraordinary finding is that we don't adapt. - Russell Foster

Similar stories

Insights into the molecular pathways of progressive multiple sclerosis

Text by Ian Fyfe for 'Nature Reviews Neurology'

Discovery of gene involved in chronic pain creates new treatment target

Our researchers have discovered a gene that regulates pain sensitisation by amplifying pain signals within the spinal cord. This is helping them to understand an important mechanism underlying chronic pain in humans, and provides a new treatment target.

Lymph nodes reveal more about mechanisms of autoimmunity

Two recent papers show that studying lymph nodes reveals details of the mechanisms of autoimmunity.

Multiple heart-related conditions linked to triple dementia risk, regardless of genetics

Having multiple conditions that affect the heart is linked to a greater risk of dementia than having high genetic risk, according to a large-scale new study.

NDCN research presented at Myasthenia Gravis conference

The 14th Quinquennial Myasthenia Gravis Federation of America International Conference was recently held in Miami with 450 delegates attending in person, including over 100 from industry.

Magnetic signatures of the brain characterised in UK Biobank imaging study

A study published this week in Nature Neuroscience demonstrates how studying the magnetic properties of tissue may provide a unique window into brain health and disease.