Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Understanding the functional dynamics of neural oscillations in the sensory thalamus is essential for elucidating the perception and modulation of neuropathic pain. Local field potentials were recorded from the sensory thalamus of twelve neuropathic pain patients. Single and combinational neural states were defined by the activity state of a single or paired oscillations. Relationships between the duration or occurrence rate of neural state and pre-operative pain level or pain relief induced by deep brain stimulation were evaluated. Results showed that the occurrence rate of the single neural state of low-beta oscillation was significantly correlated with pain relief. The duration and occurrence rate of combinational neural states of the paired low-beta with delta, theta, alpha, high-beta or low-gamma oscillations were more significantly correlated with pain relief than the single neural states. Moreover, these significant combinational neural states formed a local oscillatory network with low-beta oscillation as a key node. The results also showed correlations between measures of combinational neural states and subjective pain level as well. The duration of combinational neural states of paired alpha with delta or theta oscillations and the occurrence rate of neural states of the paired delta with low-beta or low-gamma oscillations were significantly correlated with pre-operative pain level. In conclusion, this study revealed that the integration of oscillations and the functional dynamics of neural states were differentially involved in modulation and perception of neuropathic pain. The functional dynamics could be biomarkers for developing neural state dependent deep brain stimulation for neuropathic pain. This article is protected by copyright. All rights reserved.

Original publication

DOI

10.1111/ejn.14569

Type

Journal article

Journal

Eur J Neurosci

Publication Date

04/09/2019

Keywords

deep brain stimulation, dynamic neural state, neural oscillation, sensory thalamus