Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Arousals commonly occur during human sleep and have been associated with several sleep disorders. Arousals are characterized as an abrupt electroencephalography (EEG) frequency change to higher frequencies during sleep. However, the human brain regions involved in arousal are not yet clear. Simultaneous EEG and functional magnetic resonance imaging (fMRI) data were recorded during the early portion of the sleep period in healthy young adults. Arousals were identified based on the EEG data, and fMRI signal changes associated with 83 arousals from 19 subjects were analyzed. Subcortical regions, including the midbrain, thalamus, basal ganglia, and cerebellum, were activated with arousal. Cortices, including the temporal gyrus, occipital gyrus, and frontal gyrus, were deactivated with arousal. The activations associated with arousal in the subcortical regions were consistent with previous findings of subcortical involvement in behavioral arousal and consciousness. Cortical deactivations may serve as a mechanism to direct incoming sensory stimuli to specific brain regions, thereby monitoring environmental perturbations during sleep.

Original publication




Journal article



Publication Date





EEG, activation, arousal, deactivation, fMRI, sleep