Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by specific patterns of gray and white matter damage and cognitive/behavioral manifestations. The cerebellum has also been implicated in the pathophysiology of AD. Because the cerebellum is known to have strong functional connectivity (FC) with associative cerebral cortex regions, it is possible to hypothesize that it is incorporated into intrinsic FC networks relevant to cognitive manifestation of AD. In the present study, the cerebellar dentate nucleus, the largest cerebellar nucleus and the major output channel to the cerebral cortex, was chosen as the region of interest to test potential cerebellocerebral FC alterations and correlations with patients' memory impairment in a group of patients with AD. Compared to controls, patients with AD showed an increase in FC between the dentate nucleus and regions of the lateral temporal lobe. This study demonstrates that lower memory performances in AD may be related to altered FC within specific cerebellocortical functional modules, thus suggesting the cerebellar contribution to AD pathophysiology and typical memory dysfunctions.

Original publication

DOI

10.1016/j.neurobiolaging.2019.10.026

Type

Journal article

Journal

Neurobiol Aging

Publication Date

05/2020

Volume

89

Pages

32 - 40

Keywords

Alzheimer's disease, Cerebellum, Dentate nucleus, Functional connectivity, Memory, Resting-state fMRI, Aged, Alzheimer Disease, Cerebellar Nuclei, Cerebral Cortex, Cognition, Female, Humans, Magnetic Resonance Imaging, Male, Memory, Neural Pathways