BCI training to move a virtual hand reduces phantom limb pain: A randomized crossover trial.
Yanagisawa T., Fukuma R., Seymour B., Tanaka M., Hosomi K., Yamashita O., Kishima H., Kamitani Y., Saitoh Y.
OBJECTIVE: To determine whether training with a brain-computer interface (BCI) to control an image of a phantom hand, which moves based on cortical currents estimated from magnetoencephalographic signals, reduces phantom limb pain. METHODS: Twelve patients with chronic phantom limb pain of the upper limb due to amputation or brachial plexus root avulsion participated in a randomized single-blinded crossover trial. Patients were trained to move the virtual hand image controlled by the BCI with a real decoder, which was constructed to classify intact hand movements from motor cortical currents, by moving their phantom hands for 3 days ("real training"). Pain was evaluated using a visual analogue scale (VAS) before and after training, and at follow-up for an additional 16 days. As a control, patients engaged in the training with the same hand image controlled by randomly changing values ("random training"). The 2 trainings were randomly assigned to the patients. This trial is registered at UMIN-CTR (UMIN000013608). RESULTS: VAS at day 4 was significantly reduced from the baseline after real training (mean [SD], 45.3 [24.2]-30.9 [20.6], 1/100 mm; p = 0.009 < 0.025), but not after random training (p = 0.047 > 0.025). Compared to VAS at day 1, VAS at days 4 and 8 was significantly reduced by 32% and 36%, respectively, after real training and was significantly lower than VAS after random training (p < 0.01). CONCLUSION: Three-day training to move the hand images controlled by BCI significantly reduced pain for 1 week. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that BCI reduces phantom limb pain.