Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Examining the brain at rest is a powerful approach used to understand the intrinsic properties of typical and disordered human brain function, yet task-free paradigms are associated with greater head motion, particularly in young and/or clinical populations such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Inscapes, a non-social and non-verbal movie paradigm, has been introduced to increase attention, thus mitigating head motion, while reducing the task-induced activations found during typical movie watching. Inscapes has not yet been validated for use in magnetoencephalography (MEG), and it has yet to be shown whether its effects are stable in clinical populations. Across typically developing (N = 32) children and adolescents and those with ASD (N = 46) and ADHD (N = 42), we demonstrate that head motion is reduced during Inscapes. Due to the task state evoked by movie paradigms, we also expectedly observed concomitant modulations in local neural activity (oscillatory power) and functional connectivity (phase and envelope coupling) in intrinsic resting-state networks and across the frequency spectra compared to a fixation cross resting-state. Increases in local activity were accompanied by decreases in low-frequency connectivity within and between resting-state networks, primarily the visual network, suggesting that task-state evoked by Inscapes moderates ongoing and spontaneous cortical inhibition that forms the idling intrinsic networks found during a fixation cross resting-state. Importantly, these effects were similar in ASD and ADHD, making Inscapes a well-suited advancement for investigations of resting brain function in young and clinical populations.

Original publication

DOI

10.1016/j.neuroimage.2020.117524

Type

Journal article

Journal

Neuroimage

Publication Date

15/01/2021

Volume

225

Keywords

Attention-deficit/hyperactivity disorder, Autism spectrum disorder, Inscapes, Magnetoencephalography, Neurodevelopmental disorders, Resting-state