Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractIn this study we present the new power electronic circuit implementation to create the arbitrary near-rectangular electromagnetic pulse. To this end, we develop a parallel- Insulated-gate bipolar transistors (IGBT)-based magnetic pulse generator utilizing the H-bridge architecture. This approach effectively reduces the current stress on the power switches while maintaining a simple structure using a single DC source and energy storage capacitor. Experimental results from the circuit characterization show that the proposed circuit is capable of repeatedly generating near-rectangular magnetic pulses and enables the generation of configurable and stable magnetic pulses without causing excessive device stresses. The introduced device enables the production of near-rectangular pulse trains for modulated magnetic stimuli. The maximum positive pulse width in the proposed neurostimulator is up to 600 µs, which is adjustable by the operator at the step resolution of 10 µs. The maximum transferred energy to the treatment coil was measured to be 100.4 J. The proposed transcranial magnetic stimulator (TMS) device enables more flexible magnetic stimulus shaping by H-bridge architecture and parallel IGBTs, which can effectively mitigate the current stress on power switches for repetitive treatment protocols.

Original publication

DOI

10.1007/s42452-021-04420-y

Type

Journal article

Journal

SN Applied Sciences

Publisher

Springer Science and Business Media LLC

Publication Date

04/2021

Volume

3