Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Abstract Long-range communication through the motor system is thought to be facilitated by phase coupling between neural activity in the 15–30 Hz beta range. During periods of sustained muscle contraction (grip), such coupling is manifest between motor cortex and the contralateral forearm muscles—measured as the cortico-muscular coherence. We examined alterations in cortico-muscular coherence in individuals with Parkinson’s disease, while equating grip strength between individuals with Parkinson’s disease (off their medication) and healthy control participants. We show a marked reduction in beta cortico-muscular coherence in the Parkinson’s disease group, even though the grip strength was comparable between the two groups. Moreover, the reduced cortico-muscular coherence was related to motor symptoms, so that individuals with lower cortico-muscular coherence also displayed worse motor symptoms. These findings highlight the cortico-muscular coherence as a simple, effective and clinically relevant neural marker of Parkinson’s disease pathology, with the potential to aid monitoring of disease progression and the efficacy of novel treatments for Parkinson’s disease.

Original publication

DOI

10.1093/braincomms/fcab179

Type

Journal article

Journal

Brain Communications

Publisher

Oxford University Press (OUP)

Publication Date

01/07/2021

Volume

3