Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractEssential tremor is a common neurological disorder, characterised by involuntary shaking of a limb. Patients are usually treated using medications which have limited effects on tremor and may cause side-effects. Surgical therapies are effective in reducing essential tremor, however, the invasive nature of these therapies together with the high cost, greatly limit the number of patients benefiting from them. Non-invasive therapies have gained increasing traction to meet this clinical need. Here, we test a non-invasive and closed-loop electrical stimulation paradigm which tracks peripheral tremor and targets thalamic afferents to modulate the central oscillators underlying tremor. To this end, 9 patients had electrical stimulation delivered to the median nerve locked to different phases of tremor. Peripheral stimulation induced a subtle but significant modulation in five out of nine patients—this modulation consisted mainly of amplification rather than suppression of tremor amplitude. Modulatory effects of stimulation were more pronounced when patient’s tremor was spontaneously weaker at stimulation onset, when significant modulation became more frequent amongst subjects. This data suggests that for selected individuals, a more sophisticated control policy entailing an online estimate of both tremor phase and amplitude, should be considered in further explorations of the treatment potential of tremor phase-locked peripheral stimulation.

Original publication

DOI

10.1038/s41598-021-96660-6

Type

Journal article

Journal

Scientific Reports

Publisher

Springer Science and Business Media LLC

Publication Date

12/2021

Volume

11