Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Both phenotype and treatment response vary in patients with Parkinson's disease. Anatomical and functional imaging studies suggest that individual symptoms may represent malfunction of different segregated networks running in parallel through the basal ganglia. In this study, we use a newly described, electrophysiological method to describe cortico-subthalamic networks in humans. We performed combined magnetoencephalographic and subthalamic local field potential recordings in thirteen patients with Parkinson's disease at rest. Two spatially and spectrally separated networks were identified. A temporoparietal-brainstem network was coherent with the subthalamic nucleus in the alpha (7-13 Hz) band, whilst a predominantly frontal network was coherent in the beta (15-35 Hz) band. Dopaminergic medication modulated the resting beta network, by increasing beta coherence between the subthalamic region and prefrontal cortex. Subthalamic activity was predominantly led by activity in the cortex in both frequency bands. The cortical topography and frequencies involved in the alpha and beta networks suggest that these networks may be involved in attentional and executive, particularly motor planning, processes, respectively.

Original publication

DOI

10.1093/brain/awq332

Type

Journal article

Journal

Brain

Publication Date

02/2011

Volume

134

Pages

359 - 374

Keywords

Adult, Brain Mapping, Brain Waves, Cerebral Cortex, Deep Brain Stimulation, Dopamine Agonists, Female, Humans, Magnetoencephalography, Male, Middle Aged, Neural Pathways, Parkinson Disease, Rest, Subthalamic Nucleus