Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We test the hypothesis that interaction between the human basal ganglia and cerebral cortex involves activity in multiple functional circuits characterized by their frequency of oscillation, phase characteristics, dopamine dependency and topography. To this end we took recordings from macroelectrodes (MEs) inserted into the subthalamic nucleus (STN) in eight awake patients following functional neurosurgery for Parkinson's disease. An EEG was also recorded, as were the signals from MEs in the globus pallidus interna (GPi) in two of the cases. Coherence between EEG and ME potentials was apparent in three major frequency bands, 2-10 Hz, 10-30 Hz and 70-85 Hz. These rhythmic activities differed in their cortical topography, although coherence was always strongest over the midline. Coherence between EEG and ME potentials in the 70-85 Hz band was only recorded in patients treated with levodopa. Cortical activity phase led that in the basal ganglia in those oscillatory activities with frequencies <30 Hz. In contrast, STN and GPi phase led cortex in the 70-85 Hz band. The temporal differences in the way in which cortical activity led or lagged behind that in STN/GPi were similar, around 20 ms, regardless of the overall direction of information flow and frequency band. We conclude that the basal ganglia may receive multiple cortical inputs at frequencies <30 Hz and, in the presence of dopaminergic activity, produce a high frequency drive back to the cerebral cortex, in particular the supplementary motor area (SMA).

Type

Journal

Brain

Publication Date

07/2002

Volume

125

Pages

1558 - 1569

Keywords

Adult, Aged, Basal Ganglia, Biological Clocks, Cerebral Cortex, Dopamine, Electrodes, Implanted, Electroencephalography, Female, Frontal Lobe, Globus Pallidus, Humans, Levodopa, Male, Middle Aged, Neural Pathways, Parkinson Disease, Periodicity, Subthalamic Nucleus, Wakefulness