Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Replay in the brain has been viewed as rehearsal or, more recently, as sampling from a transition model. Here, we propose a new hypothesis: that replay is able to implement a form of compositional computation where entities are assembled into relationally bound structures to derive qualitatively new knowledge. This idea builds on recent advances in neuroscience, which indicate that the hippocampus flexibly binds objects to generalizable roles and that replay strings these role-bound objects into compound statements. We suggest experiments to test our hypothesis, and we end by noting the implications for AI systems which lack the human ability to radically generalize past experience to solve new problems.

Original publication

DOI

10.1016/j.neuron.2022.12.028

Type

Journal article

Journal

Neuron

Publication Date

04/01/2023