Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Magnetic resonance spectroscopy (MRS) can non-invasively measure levels of endogenous metabolites in living tissue and is of great interest to neuroscience and clinical research. To this day, MRS data analysis workflows differ substantially between groups, frequently requiring many manual steps to be performed on individual datasets, e.g., data renaming/sorting, manual execution of analysis scripts, and manual assessment of success/failure. Manual analysis practices are a substantial barrier to wider uptake of MRS. They also increase the likelihood of human error and prevent deployment of MRS at large scale. Here, we demonstrate an end-to-end workflow for fully automated data uptake, processing, and quality review.The proposed continuous automated MRS analysis workflow integrates several recent innovations in MRS data and file storage conventions. They are efficiently deployed by a directory monitoring service that automatically triggers the following steps upon arrival of a new raw MRS dataset in a project folder: (1) conversion from proprietary manufacturer file formats into the universal format NIfTI-MRS; (2) consistent file system organization according to the data accumulation logic standard BIDS-MRS; (3) executing a command-line executable of our open-source end-to-end analysis software Osprey; (4) e-mail delivery of a quality control summary report for all analysis steps.The automated architecture successfully completed for a demonstration dataset. The only manual step required was to copy a raw data folder into a monitored directory.Continuous automated analysis of MRS data can reduce the burden of manual data analysis and quality control, particularly for non-expert users and multi-center or large-scale studies and offers considerable economic advantages.

Original publication

DOI

10.1007/s10916-023-01969-6

Type

Journal article

Journal

J Med Syst

Publication Date

07/07/2023

Volume

47

Keywords

BIDS, Linear-combination modeling, Magnetic resonance spectroscopy, NIfTI-MRS, Osprey, Reproducibility, Humans, Workflow, Software, Magnetic Resonance Spectroscopy, Probability