Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Existing neurostimulation systems implanted for the treatment of neurodegenerative disorders generally deliver invariable therapy parameters, regardless of phase of the sleep/wake cycle. However, there is considerable evidence that brain activity in these conditions varies according to this cycle, with discrete patterns of dysfunction linked to loss of circadian rhythmicity, worse clinical outcomes and impaired patient quality of life. We present a targeted concept of circadian neuromodulation using a novel device platform. This system utilises stimulation of circuits important in sleep and wake regulation, delivering bioelectronic cues (Zeitgebers) aimed at entraining rhythms to more physiological patterns in a personalised and fully configurable manner. Preliminary evidence from its first use in a clinical trial setting, with brainstem arousal circuits as a surgical target, further supports its promising impact on sleep/wake pathology. Data included in this paper highlight its versatility and effectiveness on two different patient phenotypes. In addition to exploring acute and long-term electrophysiological and behavioural effects, we also discuss current caveats and future feature improvements of our proposed system, as well as its potential applicability in modifying disease progression in future therapies.

Original publication

DOI

10.1109/smc53992.2023.10394632

Type

Journal article

Journal

Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Publication Date

29/01/2024

Volume

2023

Pages

2301 - 2308

Keywords

3 Good Health and Well Being, 32 Biomedical and Clinical Sciences, 3201 Cardiovascular Medicine and Haematology, Brain Disorders, Neurosciences, Sleep Research