Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Motor complications are well recognized in Parkinson's disease (PD), but their reported prevalence varies and functional impact has not been well studied. OBJECTIVES: To quantify the presence, severity, impact and associated factors for motor complications in PD. METHODS: Analysis of three large prospective cohort studies of recent-onset PD patients followed for up to 12 years. The MDS-UPDRS part 4 assessed motor complications and multivariable logistic regression tested for associations. Genetic risk score (GRS) for Parkinson's was calculated from 79 single nucleotide polymorphisms. RESULTS: 3343 cases were included (64.7% male). Off periods affected 35.0% (95% CI 33.0, 37.0) at 4-6 years and 59.0% (55.6, 62.3) at 8-10 years. Dyskinesia affected 18.5% (95% CI 16.9, 20.2) at 4-6 years and 42.1% (38.7, 45.5) at 8-10 years. Dystonia affected 13.4% (12.1, 14.9) at 4-6 years and 22.8% (20.1, 25.9) at 8-10 years. Off periods consistently caused greater functional impact than dyskinesia. Motor complications were more common among those with higher drug doses, younger age at diagnosis, female gender, and greater dopaminergic responsiveness (in challenge tests), with associations emerging 2-4 years post-diagnosis. Higher Parkinson's GRS was associated with early dyskinesia (0.026 ≤ P ≤ 0.050 from 2 to 6 years). CONCLUSIONS: Off periods are more common and cause greater functional impairment than dyskinesia. We confirm previously reported associations between motor complications with several demographic and medication factors. Greater dopaminergic responsiveness and a higher genetic risk score are two novel and significant independent risk factors for the development of motor complications.

Original publication

DOI

10.1002/mdc3.14044

Type

Journal article

Journal

Mov Disord Clin Pract

Publication Date

08/04/2024

Keywords

Parkinson's, dyskinesia, dystonia, motor complications