Response-time enhancement of a clinical gas analyzer facilitates measurement of breath-by-breath gas exchange
Farmery AD., Hahn CEW.
<jats:p> Tidal ventilation gas-exchange models in respiratory physiology and medicine not only require solution of mass balance equations breath-by-breath but also may require within-breath measurements, which are instantaneous functions of time. This demands a degree of temporal resolution and fidelity of integration of gas flow and concentration signals that cannot be provided by most clinical gas analyzers because of their slow response times. We have characterized the step responses of the Datex Ultima (Datex Instrumentation, Helsinki, Finland) gas analyzer to oxygen, carbon dioxide, and nitrous oxide in terms of a Gompertz four-parameter sigmoidal function. By inversion of this function, we were able to reduce the rise times for all these gases almost fivefold, and, by its application to real on-line respiratory gas signals, it is possible to achieve a performance comparable to the fastest mass spectrometers. With the use of this technique, measurements required for non-steady-state and tidal gas-exchange models can be made easily and reliably in the clinical setting. </jats:p>