Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Diffusion imaging of post-mortem brains could provide valuable data for validation of diffusion tractography of white matter pathways. Long scans (e.g., overnight) may also enable high-resolution diffusion images for visualization of fine structures. However, alterations to post-mortem tissue (T2 and diffusion coefficient) present significant challenges to diffusion imaging with conventional diffusion-weighted spin echo (DW-SE) acquisitions, particularly for imaging human brains on clinical scanners. Diffusion-weighted steady-state free precession (DW-SSFP) has been proposed as an alternative acquisition technique to ameliorate this tradeoff in large-bore clinical scanners. In this study, both DWSE and DW-SSFP are optimized for use in fixed white matter on a clinical 3-Tesla scanner. Signal calculations predict superior performance from DW-SSFP across a broad range of protocols and conditions. DW-SE and DW-SSFP data in a whole, post-mortem human brain are compared for 6- and 12-hour scan durations. Tractography is performed in major projection, commissural and association tracts (corticospinal tract, corpus callosum, superior longitudinal fasciculus and cingulum bundle). The results demonstrate superior tract-tracing from DW-SSFP data, with 6-hour DW-SSFP data performing as well as or better than 12-hour DW-SE scans. These results suggest that DW-SSFP may be a preferred method for diffusion imaging of post-mortem human brains. The ability to estimate multiple fibers in imaging voxels is also demonstrated, again with greater success in DW-SSFP data. © 2011 Elsevier Inc.

Original publication

DOI

10.1016/j.neuroimage.2011.09.054

Type

Journal article

Journal

NeuroImage

Publication Date

01/02/2012

Volume

59

Pages

2284 - 2297