Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In development approximately 70-80% of dorsal root ganglion (DRG) cells are dependent on nerve growth factor (NGF) for their survival, while in the adult only some 40% of DRG cells express the high-affinity NGF receptor, trkA. This discrepancy suggests that trkA expression, and therefore neurotrophin sensitivity, may alter as the animal matures. We have tested this possibility by counting the number of L4/5 DRG neurons showing immunoreactivity for trkA in rats from the day of birth to postnatal day 14. We also examined changes in p75 and IB4 labelling. On the day of birth, 71% of DRG cells were found to express trkA. However, this percentage gradually fell with age and reached adult levels at postnatal day 14. The expression of p75 did not parallel that of trkA, remaining relatively constant at between 45 and 50% of cells from birth to postnatal day 14. Over the same period there was a marked increase in the proportion of cells which bind the lectin IB4 from 9 (day of birth) to 40% (day 14). Since in the adult the IB4 population consists of small cells which mostly do not express trkA, this finding suggests that the postnatal down-regulation of trkA occurs in this population. Consistent with this suggestion are the results of double labelling for trkA and IB4, which confirmed that at times intermediate between birth and postnatal day 14 there was a high degree of coexpression between these markers (which is absent in the adult). This result also suggests that the down-regulation of trkA is unlikely to be directly responsible for the emerging IB4 binding.

Type

Journal article

Journal

Eur J Neurosci

Publication Date

10/1996

Volume

8

Pages

2204 - 2208

Keywords

Animals, Animals, Newborn, Immunohistochemistry, Lectins, Nerve Tissue Proteins, Neurons, Afferent, Proto-Oncogene Proteins, Rats, Receptor Protein-Tyrosine Kinases, Receptor, Nerve Growth Factor, Receptor, trkA, Receptors, Nerve Growth Factor, Staining and Labeling