Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: Severity of illness scores have gained considerable interest for their use in predicting outcomes such as mortality and length of stay. The most sophisticated scoring systems require the collection of numerous physiologic measurements, making their use in real-time difficult. A severity of illness score based on a few parameters that can be captured electronically would be of great benefit. Using a machine-learning technique known as particle swarm optimization, we attempted to reduce the number of physiologic parameters collected in the Acute Physiology, Age, and Chronic Health Evaluation IV system without losing predictive accuracy. DESIGN: Retrospective cohort study of ICU admissions from 2007 to 2011. SETTING: Eighty-six ICUs at 49 U.S. hospitals where an Acute Physiology, Age, and Chronic Health Evaluation IV system had been installed. PATIENTS: 81,087 admissions, of which 72,474 did not have any missing values. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Machine-learning algorithms were used to come up with the minimal set of variables that were capable of yielding an accurate severity of illness score: the Oxford Acute Severity of Illness Score. Predictive models of ICU mortality using Oxford Acute Severity of Illness Score were developed on admissions during 2007-2009 and validated on admissions during 2010-2011. The most parsimonious Oxford Acute Severity of Illness Score consisted of seven physiologic measurements, elective surgery, age, and prior length of stay. Predictive models of ICU mortality using Oxford Acute Severity of Illness Score achieved an area under the receiver operating characteristic curve of 0.88 and calibrated well. CONCLUSIONS: A reduced severity of illness score had discrimination and calibration equivalent to more complex existing models. This was accomplished in large part using machine-learning algorithms, which can effectively account for the nonlinear associations between physiologic parameters and outcome.

Original publication

DOI

10.1097/CCM.0b013e31828a24fe

Type

Journal article

Journal

Crit Care Med

Publication Date

07/2013

Volume

41

Pages

1711 - 1718

Keywords

APACHE, Artificial Intelligence, Chronic Disease, Continental Population Groups, Female, Health Status Indicators, Humans, Intensive Care Units, Length of Stay, Male, Middle Aged, ROC Curve, Retrospective Studies, Sensitivity and Specificity