STAT1-induced ASPP2 transcription identifies a link between neuroinflammation, cell polarity, and tumor suppression
Turnquist C., Wang Y., Severson DT., Zhong S., Sun B., Ma J., Constantinescu SN., Ansorge O., Stolp HB., Molnár Z., Szele FG., Lu X.
SignificanceTwo of the most debilitating and scientifically challenging diseases of the 21st century are cancer and neurodegeneration. Although cancer results from excessive cell growth, neurodegeneration is a consequence of excessive cell loss. Dysfunction of the same key regulators, including oncogenes and tumor suppressors, may cause both diseases. We report that LPS and IFN induce apoptosis-stimulating protein of p53 with signature sequences of ankyrin repeat-, SH3 domain-, and proline-rich region-containing protein 2 (ASPP2) transcription through a signal transducer and activator of transcription 1 (STAT1) -dependent but NF-κB RELA/p65-independent pathway and that ASPP2 mediates LPS-induced apoptosis. Thus, the identified STAT1/ASPP2 pathway reveals an important function of ASPP2 in the cellular response to inflammation and infection and connects neuroinflammation to cell polarity and tumor suppression.