Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Ultrasound (US) is a widely used clinical imaging modality that offers penetration depths in tissue of >10 cm. However, the spatial resolution in US imaging is fundamentally limited by diffraction to approximately half the wavelength of the sound wave employed. The spatial resolution of optical microscopy is limited by the same fundamental physics, but in recent years super-resolution imaging techniques have been developed that overcome the diffraction limit through the localization of many spatially separated photo-switchable or photo-activatable fluorophores. In this paper, we apply a related approach to demonstrate super-resolution imaging with US. We imaged dilute suspensions of microbubble contrast agents flowing through narrow tube-based phantoms. By spatially localizing multiple spatially isolated microbubbles, we constructed super-resolved microbubble location density maps that clearly resolve features 5.1-2.2 times smaller than the US system point spread function full width half maximum in the lateral and axial directions respectively. Our initial characterization experiment using a fixed 100 µm diameter brass wire and a US frequency of 2 MHz suggests that for an ideal stationary point scatterer the ultimate resolution of the unmodified clinical US system used could be in the range of 2-4 µm.

Original publication

DOI

10.1088/0031-9155/58/18/6447

Type

Journal article

Journal

Phys Med Biol

Publication Date

21/09/2013

Volume

58

Pages

6447 - 6458

Keywords

Acoustics, Cellulose, Contrast Media, Diagnostic Imaging, Equipment Design, Fluorescent Dyes, Microbubbles, Microscopy, Optics and Photonics, Phantoms, Imaging, Time Factors, Ultrasonics, Ultrasonography