Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

An emerging body of evidence is consistent with the hypothesis that dietary fats influence Alzheimer's disease (AD) risk, but less clear is the mechanisms by which this occurs. Alzheimer's is an inflammatory disorder, many consider in response to fibrillar formation and extracellular deposition of amyloid-beta (Abeta). Alternatively, amyloidosis could notionally be a secondary phenomenon to inflammation, because some studies suggest that cerebrovascular disturbances precede amyloid plaque formation. Hence, dietary fats may influence AD risk by either modulating Abeta metabolism, or via Abeta independent pathways. This review explores these two possibilities taking into consideration; (i) the substantial affinity of Abeta for lipids and its ordinary metabolism as an apolipoprotein; (ii) evidence that Abeta has potent vasoactive properties and (iii) studies which show that dietary fats modulate Abeta biogenesis and secretion. We discuss accumulating evidence that dietary fats significantly influence cerebrovascular integrity and as a consequence altered Abeta kinetics across the blood-brain barrier (BBB). Specifically, chronic ingestion of saturated fats or cholesterol appears to results in BBB dysfunction and exaggerated delivery from blood-to-brain of peripheral Abeta associated with lipoproteins of intestinal and hepatic origin. Interestingly, the pattern of saturated fat/cholesterol induced cerebrovascular disturbances in otherwise normal wild-type animal strains is analogous to established models of AD genetically modified to overproduce Abeta, consistent with a causal association. Saturated fats and cholesterol may exacerbate Abeta induced cerebrovascular disturbances by enhancing exposure of vessels of circulating Abeta. However, presently there is no evidence to support this contention. Rather, SFA and cholesterol appear to more broadly compromise BBB integrity with the consequence of plasma protein leakage into brain, including lipoprotein associated Abeta. The latter findings are consistent with the concept that AD is a dietary-fat induced phenotype of vascular dementia, reflecting the extraordinary entrapment of peripherally derived lipoproteins endogenously enriched in Abeta. Rather than being the initiating trigger for inflammation in AD, accumulation of extracellular lipoprotein-Abeta may be a secondary amplifier of dietary induced inflammation, or possibly, simply be consequential. Clearly, delineating the mechanisms by which dietary fats increase AD risk may be informative in developing new strategies for prevention and treatment of AD.

Original publication




Journal article


Prog Lipid Res

Publication Date





159 - 170


Alzheimer Disease, Amyloid beta-Peptides, Animals, Apolipoproteins, Blood-Brain Barrier, Cerebrovascular Disorders, Dietary Fats, Fatty Acids, Mice, Risk Factors