Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Exosomes are both active in mediating intracellular communication and potentially present a potent cargo of disease biomarkers to an assay. The robust evaluation of exosomal markers could lead to a paradigm shift in clinical analysis and associated care. To date, much of this has been hindered by issues of sample preparation and assay signal-to-noise. We introduce here the use of ultrasensitive electrochemical impedance spectroscopy to quantify both external (tetraspanin) and internal (syntenin) exosome-specific markers. Associated exosome detection limits are 1.9 × 105 particles mL-1 (equivalent to 320 aM or 9500 exosomes in 50 μL) for intact exosomes and 3-5 picomolar for internal exosomal syntenin levels with almost 5 decades of linear dynamic range. Sample preparation can be carried out by simple fine filtering of cell-conditioned medium prior to a non-NTA-determined (i.e., nanoparticle tracking analysis) exosome concentration analysis, lysing, and subsequent internal syntenin quantification. Such concentration-normalized dual-marker analysis can be used to define "analytical zones" in a manner which is then independent of absolute exosome concentration and sample preparation.

Original publication

DOI

10.1021/acs.analchem.6b05037

Type

Journal article

Journal

Anal Chem

Publication Date

07/03/2017

Volume

89

Pages

3184 - 3190