Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The reabsorption of filtered plasma proteins, hormones and vitamins by the renal proximal tubules is vital for body homeostasis. Studies of megalin-deficient mice suggest that the large multi-ligand endocytic receptor megalin plays an essential role in this process. In humans, dysfunctional megalin causes the extremely rare Donnai-Barrow/Facio-Oculo-Acustico-Renal (DB/FOAR) syndrome characterized by a characteristic and multifaceted phenotype including low-molecular-weight proteinuria. In this study, we examined the role of megalin for tubular protein reabsorption in humans through analysis of proximal tubular function in megalin-deficient patients. METHODS: Direct sequencing of the megalin-encoding gene (LRP2) was performed in a family in which three children presented with classical DB/FOAR manifestations. Renal consequences of megalin deficiency were investigated through immunohistochemical analyses of renal biopsy material and immunoblotting of urine samples. RESULTS: In the patients, a characteristic urinary protein profile with increased urinary excretion of vitamin D-binding protein, retinol-binding protein and albumin was associated with absence of, or reduced, proximal tubular endocytic uptake as shown by renal immunohistochemistry. In the absence of tubular uptake, urinary albumin excretion was in the micro-albuminuric range suggesting that limited amounts of albumin are filtered in human glomeruli. CONCLUSIONS: This study demonstrated that megalin plays an essential role for human proximal tubular protein reabsorption and suggests that only limited amounts of albumin is normally filtered in the human glomeruli. Finally, we propose that the characteristic urinary protein profile of DB/FOAR patients may be utilized as a diagnostic marker of megalin dysfunction.

Original publication




Journal article


Nephrol Dial Transplant

Publication Date





585 - 591


Agenesis of Corpus Callosum, Albumins, Child, Preschool, Female, Hearing Loss, Sensorineural, Hernias, Diaphragmatic, Congenital, Humans, Kidney Tubules, Proximal, Low Density Lipoprotein Receptor-Related Protein-2, Mutation, Myopia, Phenotype, Proteinuria, Renal Tubular Transport, Inborn Errors