Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Quantitative magnetization transfer (qMT) imaging can provide indices describing the interactions between free water protons and immobile macromolecular protons. These indices include the macromolecular proton fraction (MPF), which has been shown to correlate with myelin content in white matter. Because of the long scan times required for high-resolution spinal cord imaging, qMT studies of the human spinal cord have not found wide-spread application. Herein, we investigated whether these limitations could be overcome by utilizing only a single MT-weighted acquisition and a reference measurement, as was recently proposed in the brain. High-resolution, in vivo qMT data were obtained at 3.0T in the spinal cords of healthy volunteers and patients with relapsing remitting multiple sclerosis (MS). Low- and high-resolution acquisitions (low/high resolution=1×1×5mm(3)/0.65×0.65×5mm(3)) with clinically acceptable scan times (12min/7min) were evaluated. We also evaluated the reliability over time and the sensitivity of the model to the assumptions made in the single-point method, both in disease and healthy tissues. Our findings suggest that the single point qMT technique can provide maps of the MPF in the spinal cord in vivo with excellent grey/white matter contrast, can be reliably obtained within reasonable scan times, and are sensitive to MS pathology. Consistent with previous qMT studies in the brain, the observed MPF values were higher in healthy white matter (0.16±0.01) than in grey matter (0.13±0.01) and in MS lesions (0.09±0.01). The single point qMT technique applied at high resolution provides an improved method for obtaining qMT in the human spinal cord and may offer a reliable outcome measure for evaluating spinal cord disease.

Original publication

DOI

10.1016/j.neuroimage.2014.03.005

Type

Journal article

Journal

Neuroimage

Publication Date

15/07/2014

Volume

95

Pages

106 - 116

Keywords

High-resolution, Multiple Sclerosis, Quantitative magnetization transfer, Spinal cord, Adult, Female, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Multiple Sclerosis, Relapsing-Remitting, Spinal Cord, Time Factors, Young Adult