Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Strong synchronization of neuronal activity occurs in the 8-35 Hz band in the subthalamic nucleus (STN) of patients with Parkinson's disease (PD) and is evident as oscillatory local field potential (LFP) activity. To test whether such synchronization may contribute to bradykinesia and rigidity, we sought correlations between the suppression of synchronization at 8-35 Hz in STN and the reduction in Parkinsonism with levodopa. LFPs were recorded on and off medication from STN deep-brain stimulation electrodes in nine PD patients. LFP power was calculated over the frequencies of the most prominent spectral peak within the 8-35 Hz frequency band on each of 17 sides (off medication), and over the frequencies of any peak in the 60-90 Hz band, if present (seven sides, on medication). Levodopa-induced reduction of LFP power over these two frequency ranges was then correlated with improvement in motor impairment as assessed by the Unified Parkinson's Disease Rating Scale (UPDRS). The reduction in peak activity in the 8-35 Hz band with levodopa positively correlated with the improvement in the contralateral hemibody motor UPDRS score with levodopa (r = 0.811, P < 0.001) as well as with hemibody subscores of akinesia-rigidity (r = 0.835, P < 0.001), but not tremor. A trend for negative correlations was found between peak 60-90 Hz LFP power and UPDRS hemibody score, suggesting that positive correlations were relatively frequency-specific. Our results support a link between levodopa-induced improvements in bradykinesia and rigidity and reductions in population synchrony at frequencies < 35 Hz in the region of the STN in patients with PD.

Original publication

DOI

10.1111/j.1460-9568.2006.04717.x

Type

Journal article

Journal

Eur J Neurosci

Publication Date

04/2006

Volume

23

Pages

1956 - 1960

Keywords

Action Potentials, Antiparkinson Agents, Cortical Synchronization, Deep Brain Stimulation, Humans, Levodopa, Middle Aged, Movement, Parkinson Disease, Subthalamic Nucleus