Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: Fast electrical rhythms in the gamma range (30-100Hz) in scalp (but not intracranial) recordings are predominantly due to electromyographic (EMG) activity. We hypothesized that increased EMG activity would be augmented by mental tasks in proportion to task difficulty and the requirement of these tasks for motor or visuo-motor output. METHODS: EEG was recorded in 98 subjects whilst performing cognitive tasks and analysed to generate power spectra. In four other subjects, neuromuscular blockade was achieved pharmacologically providing EMG-free spectra of EEG at rest and during mental tasks. RESULTS: In comparison to the paralysed condition, power of scalp electrical recordings in the gamma range varied in distribution, being maximal adjacent to cranial or cervical musculature. There were non-significant changes in mean gamma range activity due to mental tasks in paralysed subjects. In normal subjects, increases in scalp electrical activity were observed during tasks, without relationship to task difficulty, but with tasks involving limb- or eye-movement having higher power. CONCLUSIONS: Electrical rhythms in the gamma frequency range recorded from the scalp are inducible by mental activity and are largely due to EMG un-related to cognitive effort. EMG varies with requirements for somatic or ocular movement more than task difficulty. SIGNIFICANCE: Severe restrictions exist on utilizing scalp recordings for high frequency EEG.

Original publication

DOI

10.1016/j.clinph.2008.01.024

Type

Journal article

Journal

Clin Neurophysiol

Publication Date

05/2008

Volume

119

Pages

1166 - 1175

Keywords

Adult, Aged, Artifacts, Atracurium, Brain, Electroencephalography, Electromyography, Humans, Male, Middle Aged, Muscle, Skeletal, Neuromuscular Blocking Agents, Paralysis, Scalp, Thinking