Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A study was performed to investigate and compare the relative performance of blind signal separation (BSS) algorithms at separating common types of contamination from EEG. The study develops a novel framework for investigating and comparing the relative performance of BSS algorithms that incorporates a realistic EEG simulation with a known mixture of known signals and an objective performance metric. The key finding is that although BSS is an effective and powerful tool for separating and removing contamination from EEG, the quality of the separation is highly dependant on the type of contamination, the degree of contamination, and the choice of BSS algorithm. BSS appears to be most effective at separating muscle and blink contamination and less effective at saccadic and tracking contamination. For all types of contamination, principal components analysis is a strong performer when the contamination is greater in amplitude than the brain signal whereas other algorithms such as second-order blind inference and Infomax are generally better for specific types of contamination of lower amplitude.

Original publication

DOI

10.1097/WNP.0b013e3180556926

Type

Journal article

Journal

J Clin Neurophysiol

Publication Date

06/2007

Volume

24

Pages

232 - 243

Keywords

Algorithms, Artifacts, Blinking, Brain, Brain Mapping, Electroencephalography, Humans, Noise, Saccades, Signal Processing, Computer-Assisted, Statistics as Topic