Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

This study is an exploratory investigation of the regional timing of cortical activity associated with verbal working memory function. ERP activity was obtained from a single subject using a 124-channel sensor array during a task requiring the monitoring of imageable words for occasional targets. Distributed cortical activity was estimated every 2.5 ms with high spatial resolution using real head, boundary element modelling of non-target activity. High-resolution structural MRI was used for segmentation of tissue boundaries and co-registration to the scalp electrode array. The inverse solution was constrained to the cortical surface. Cortical activity was observed in regions commonly associated with verbal working memory function. This included: the occipital pole (early visual processing); the superior temporal and inferior parietal gyrus bilaterally and the left angular gyrus (visual and phonological word processing); the dorsal lateral occipital gyrus (spatial processing); and aspects of the bilateral superior parietal lobe (imagery and episodic verbal memory). Activity was also observed in lateral and superior prefrontal regions associated with working memory control of sensorimotor processes. The pattern of cortical activity was relatively stable over time, with variations in the extent and amplitude of contributing local source activations. By contrast, the pattern of concomitant scalp topography varied considerably over time, reflecting the linear summation effects of volume conduction that often confound dipolar source modelling.

Type

Journal article

Journal

Int J Psychophysiol

Publication Date

10/2001

Volume

42

Pages

161 - 176

Keywords

Adult, Brain Mapping, Cerebral Cortex, Evoked Potentials, Humans, Magnetic Resonance Imaging, Male, Memory, Nerve Net, Photic Stimulation