Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© The Minerals, Metals & Materials Society 2018. Initiation and propagation of cracks under simulated primary water conditions and different slow strain rates have been studied for an austenitic 304-type stainless steel. Two surface finishes were used to better understand the conditions that trigger stress corrosion cracking (SCC). The main objective is to identify the mechanism(s) that govern the initiation and propagation of SCC and the influence of microstructure. Crack morphology, stress localisation and local chemical composition were characterized for all samples studied. The characterization methodology includes scanning electron microscopy (SEM), 3D focused ion beam (FIB), Transmission Kikuchi Diffraction (TKD), and analytical scanning transmission electron microscopy (STEM).

Original publication

DOI

10.1007/978-3-319-67244-1_53

Type

Conference paper

Publication Date

01/01/2018

Volume

Part F9

Pages

829 - 847