Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© The Minerals, Metals & Materials Society 2018. Although service experience of austenitic stainless steels exposed to PWR primary coolant has been good, stress corrosion crack propagation has been observed in laboratory tests in the presence of ≥15% cold work. Data on crack initiation are much more limited and this study therefore aims to improve the understanding of the conditions under which crack initiation and subsequent development of stress corrosion cracking might be possible. Testing was performed on two heats of Type 304/304L stainless steel under slow strain rate tensile loading. A range of analytical techniques were used to characterize the resultant precursor features and cracking, and digital image correlation before and after testing was also used to evaluate the influence of localized deformation on SCC. The results indicate that crack initiation can occur in austenitic stainless steels exposed to good quality primary coolant under dynamic straining conditions; additional testing underway under more plant-representative conditions will be reported later. Significant influences of steel microstructure on crack initiation susceptibility were observed.

Original publication




Conference paper

Publication Date



Part F9


775 - 792