Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We formalize the pair-wise registration problem in a maximum a posteriori (MAP) framework that employs a multinomial model of joint intensities with parameters for which we only have a prior distribution. To obtain an MAP estimate of the aligning transformation alone, we treat the multinomial parameters as nuisance parameters, and marginalize them out. If the prior on those is uninformative, the marginalization leads to registration by minimization of joint entropy. With an informative prior, the marginalization leads to minimization of the entropy of the data pooled with pseudo observations from the prior. In addition, we show that the marginalized objective function can be optimized by the Expectation-Maximization (EM) algorithm, which yields a simple and effective iteration for solving entropy-based registration problems. Experimentally, we demonstrate the effectiveness of the resulting EM iteration for rapidly solving a challenging intra-operative registration problem.

Original publication

DOI

10.1007/978-3-540-73273-0_55

Type

Journal article

Journal

Inf Process Med Imaging

Publication Date

2007

Volume

20

Pages

662 - 674

Keywords

Algorithms, Artificial Intelligence, Brain, Humans, Image Enhancement, Image Interpretation, Computer-Assisted, Imaging, Three-Dimensional, Likelihood Functions, Magnetic Resonance Imaging, Pattern Recognition, Automated, Reproducibility of Results, Sensitivity and Specificity, Subtraction Technique