Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In previous studies, fully functional rod and long-wavelength-sensitive (LWS) cone photopigments have been isolated from the eye of the subterranean blind mole rat (Spalax ehrenbergi superspecies). Spalax possesses subcutaneous atrophied eyes and lacks any ability to respond to visual images. By contrast this animal retains the ability to entrain circadian rhythms of locomotor behaviour to environmental light cues. As this is the only known function of the eye, the rod and LWS photopigments are thought to mediate this response. Most mammals are dichromats possessing, in addition to a single rod photopigment, two classes of cone photopigment, LWS and ultraviolet-sensitive/violet-sensitive (UVS/VS) with differing spectral sensitivities which mediate colour vision. In this paper we explore whether Spalax is a dichromat and has the potential to use colour discrimination for photoentrainment. Using immunocytochemistry and molecular approaches we demonstrate that Spalax is a LWS monochromat. Spalax lacks a functional UVS/VS cone photopigment due to the accumulation of several deleterious mutational changes that have rendered the gene nonfunctional. Using phylogenetic analysis we show that the loss of this class of photoreceptor is likely to have arisen from the visual ecology of this species, and is not an artefact of having an ancestor which lacked a functional UVS/VS cone photopigment. We conclude that colour discrimination is not a prerequisite for photoentrainment in this species.

Type

Journal article

Journal

Eur J Neurosci

Publication Date

10/2002

Volume

16

Pages

1186 - 1194

Keywords

Adaptation, Biological, Animals, Blindness, DNA, Complementary, Frameshift Mutation, Gene Deletion, Immunohistochemistry, Mole Rats, Molecular Sequence Data, Phylogeny, Polymerase Chain Reaction, Rats, Retinal Cone Photoreceptor Cells, Rod Opsins, Sequence Analysis, DNA, Sequence Homology, Amino Acid, Species Specificity, Ultraviolet Rays