Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

While anti-angiogenic therapies for wet age-related macular degeneration (AMD) are effective for many patients, they require multiple injections and are expensive and prone to complications. Gene therapy could be an elegant solution for this problem by providing a long-term source of anti-angiogenic proteins after a single administration. Another potential issue with current therapeutic proteins containing a fragment crystallizable (Fc) domain (such as whole antibodies like bevacizumab) is the induction of an unwanted immune response. In wet AMD, a low level of inflammation is already present, so to avoid exacerbation of disease by the therapeutic protein, we propose single-chain fragment variable (scFv) antibodies, which lack the Fc domain, as a safer alternative. To investigate the feasibility of this, anti-vascular endothelial growth factor (VEGF)-blocking antibodies in two formats were produced and tested in vitro and in vivo. The scFv transgene was then cloned into an adeno-associated virus (AAV) vector. A therapeutic effect in a mouse model of choroidal neovascularization (CNV) was demonstrated with antibodies in both scFv and immunoglobulin G1 (IgG1) formats (p < 0.04). Importantly, the scFv anti-VEGF antibody expressed from an AAV vector also had a significant beneficial effect (p = 0.02), providing valuable preclinical data for future translation to the clinic.

Original publication

DOI

10.1016/j.omtm.2018.11.005

Type

Journal article

Journal

Mol Ther Methods Clin Dev

Publication Date

14/06/2019

Volume

13

Pages

86 - 98

Keywords

AAV, AMD, CNV mouse model, angiogenesis, anti-VEGF scFv antibodies, gene therapy, single-chain, vector