Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Functional Magnetic Resonance Imaging (FMRI) allows indirect observation of brain activity through changes in blood oxygenation, which are driven by neural activity. ICA has become a popular exploratory analysis approach due its advantages over regression methods in accounting for structured noise as well as signals of interest. However, standard ICA in FMRI ignores some of the spatial and temporal structure contained in such data. Using prior knowledge that the Blood Oxygenation Level Dependent (BOLD) response is spatially smooth and manifests itself on certain spatial scales, we estimate the unmixing matrix using only the coarse coefficients of a 3D Discrete Wavelet Transform (DWT). We utilise prior biophysical knowledge that the BOLD response manifests itself mainly at the spatial scales we use for unmixing. Tests on realistic synthetic FMRI data show improved accuracy, greater robustness to misspecification of underlying dimensionality, and an approximate fourfold speed increase; in addition the algorithm becomes parallelizable. © Springer-Verlag Berlin Heidelberg 2007.

Type

Conference paper

Publication Date

01/12/2007

Volume

4666 LNCS

Pages

625 - 632