Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genetic variation in the human serotonin transporter (5-HTT) has been linked to altered fear learning but the data are inconsistent and the mechanism is unclear. The present study investigated conditioned aversive learning in 5-HTT knockout (KO) mice while simultaneously recording neural network activity (theta oscillations) and hemodynamic responses (tissue oxygen delivery) from the amygdala, a brain region necessary for forming fearful memories. Conditioned aversive learning was measured using a discrimination learning task in which one auditory cue was paired with foot-shock, whereas a second auditory cue was not. Compared with wild-type mice, 5-HTTKO mice exhibited faster discrimination learning. This effect was associated with stronger theta frequency oscillations and greater hemodynamic changes in the amygdala in response to both the emotionally relevant cues and the unconditioned foot-shock stimulus. Furthermore, hemodynamic responses to the unconditioned stimulus predicted behavioral discrimination performance the following day. Acute pharmacological 5-HTT blockade in wild-type mice produced a similar effect, to the extent that administration of citalopram during the fear conditioning sessions enhanced fear memory recall. Collectively, our data argue that loss of 5-HTT function enhances amygdala responsivity to aversive events and facilitates learning for emotionally relevant cues.

Original publication

DOI

10.1038/s41398-019-0476-8

Type

Journal article

Journal

Transl Psychiatry

Publication Date

17/04/2019

Volume

9

Keywords

Amygdala, Animals, Citalopram, Conditioning, Classical, Cues, Discrimination Learning, Fear, Female, Male, Memory, Mice, Mice, Inbred C57BL, Mice, Knockout, Serotonin Plasma Membrane Transport Proteins