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Objectives: Determine the intra-tidal regional gas and blood 
volume distributions at different levels of atelectasis in experi-
mental lung injury. Test the hypotheses that pulmonary aeration 
and blood volume matching is reduced during inspiration in the 

setting of minimal tidal recruitment/derecruitment and that this 
mismatching is an important determinant of hypoxemia.
Design: Preclinical study.
Setting: Research laboratory.
Subjects: Seven anesthetized pigs 28.7 kg (sd, 2.1 kg).
Interventions: All animals received a saline-lavage surfactant de-
pletion lung injury model. Positive end-expiratory pressure was 
varied between 0 and 20 cm H2O to induce different levels of at-
electasis.
Measurements and Main Results: Dynamic dual-energy CT images 
of a juxtadiaphragmatic slice were obtained, gas and blood volume 
fractions within three gravitational regions calculated and normal-
ized to lung tissue mass (normalized gas volume and normalized 
blood volume, respectively). Ventilatory conditions were grouped 
based upon the fractional atelectatic mass in expiration (< 20%, 
20–40%, and ≥ 40%). Tidal recruitment/derecruitment with frac-
tional atelectatic mass in expiration greater than or equal to 40% 
was less than 7% of lung mass. In this group, inspiration-related in-
crease in normalized gas volume was greater in the nondependent 
(818 µL/g [95% CI, 729–908 µL/g]) than the dependent region 
(149 µL/g [120–178 µL/g]). Normalized blood volume decreased 
in inspiration in the nondependent region (29 µL/g [12–46 µL/g]) 
and increased in the dependent region (39 µL/g [30–48 µL/g]). 
Inspiration-related changes in normalized gas volume and normal-
ized blood volume were negatively correlated in fractional atelec-
tatic mass in expiration greater than or equal to 40% and 20–40% 
groups (r2 = 0.56 and 0.40), but not in fractional atelectatic mass 
in expiration less than 20% group (r2 = 0.01). Both the increase 
in normalized blood volume in the dependent region and fractional 
atelectatic mass in expiration negatively correlated with Pao2/Fio2 
ratio (ρ = –0.77 and –0.93, respectively).
Conclusions: In experimental atelectasis with minimal tidal recruit-
ment/derecruitment, mechanical inspiratory breaths redistributed 
blood volume away from well-ventilated areas, worsening Pao2/
Fio2. (Crit Care Med 2019; XX:00–00)
Key Words: pulmonary circulation; respiratory distress syndrome, 
adult; tomography, x-ray computed; ventilation-perfusion ratio; 
ventilator-induced lung injury, swine
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Mechanical ventilation is the mainstay of treatment 
in the acute respiratory distress syndrome (ARDS) 
(1) with refractory hypoxemia remaining common 

(2). The optimal settings for mechanical ventilatory variables, 
including positive end-expiratory pressure (PEEP), remain 
difficult to define on the individual patient basis (3). PEEP 
significantly improves oxygenation in ARDS (4–6) and may 
mitigate ventilator-induced lung injury (7, 8). Conversely, 
PEEP reduces cardiac output (9, 10), worsens overdisten-
sion injury of well-ventilated regions (3), and may increase 
mortality (11). Most research aimed at setting the optimum 
mechanical ventilation variables have focused on alveolar re-
cruitment and lung compliance; fewer studies have investi-
gated the impact of these settings on regional distribution of 
pulmonary perfusion (Q)

i
. Oxygenation is improved by pul-

monary ventilation (V)
i

 and Q
i

 matching, so Q
i

 should be 
considered throughout the respiratory cycle when titrating 
ventilation in ARDS.

Prolonged high inspiratory pressures may worsen oxygen-
ation in patients (12) and in experimental lung injury (13) 
due to redistribution of blood toward dependent regions. 
Determining the regional distribution of blood during the 
time course of a single breath remains challenging. CT scan-
ning is a possible technology; however, a limitation is that a 
low iodine contrast concentration or a high atelectatic lung 
density within a voxel can have the same CT number (14–
16). When considering the lung, if a voxel has an attenuation 
of 58 Hounsfield units (HU) with a tube voltage of 140 kVp, 
it is impossible to determine whether it contains 100% soft 
tissue or a mixture of 13% gas, 17% soft tissue, and 70% 
iodinated blood (Fig. 1A, points B and D). Dual-energy CT 
(DECT) three-material differentiation solves this problem 
by imaging the same voxel with two different x-ray spectra 
which will be attenuated to a different degree by each mate-
rial (Fig. 1, A and B). By combining it with a dynamic tech-
nique imaging a single slice over time (dDECT), it is suited 
for simultaneously assessing gas and blood volume distribu-
tions during the respiratory cycle. Unfortunately, commer-
cial DECT implementations are aimed toward qualitative 
interpretation of lung parenchymal blood content during 
apnea, rather than continuous quantification within respi-
ratory cycles.

We developed a three-material differentiation algorithm for 
DECT images, validated it in vitro and in vivo, and used it to 
study a collapse-prone lung injury pig model. We hypothesized 
that ventilatory conditions associated with significant atelec-
tasis and minimal tidal recruitment/derecruitment (R/D), 
as results from low PEEP in our model, would demonstrate 
worsening of gas (V) and blood volume (Q) matching during 
inspiration.

MATERIALS AND METHODS
Animal experiments received ethics committee approval (Upp-
sala Regional Animal Research Ethics Committee ref. C98/16) 
and conformed with the Animal Research: Reporting of In Vivo 
Experiments (ARRIVE) (17) guidelines. For full experimental 

details, see Supplementary Methods (Supplemental Digital 
Content 1, http://links.lww.com/CCM/F147).

Experimental Protocol
Seven domestic pigs (28.7 kg [2.1 kg]; mean [sd]) were me-
chanically ventilated under general anesthesia and a lung injury 
model induced by saline-lavage surfactant depletion. Animals 
were ventilated supine in a protocolized order covering PEEP 
steps from 5 to 20 cm H

2
O, in 5 cm H

2
O increments, and in 

reverse to 0 cm H
2
O (from here on termed “ventilatory con-

ditions”). Both limbs of the incremental/decremental PEEP 
protocol were studied in order to detect any hysteresis in the 
results, and the protocol inverted in two animals to reduce bias 
related to time from injury. Respiratory rate was 10 min–1, tidal 
volume (Vt) 10 mL/kg and inspiratory:expiratory ratio 1:2. 
Single juxtadiaphragmatic slice dDECT images of two com-
plete respiratory cycles were obtained at 1-second intervals in 
each ventilatory condition. Images were segmented into three 
gravitational regions of equal height, and the DECT algo-
rithm (Supplemental Methods, Supplemental Digital Content 
1, http://links.lww.com/CCM/F147) applied to determine the 
mean volume fractions of gas, iodinated blood, and soft tissue 
within each region.

Normalized Gas and Blood Volumes
When the lung is inflated, it expands in three dimensions, but 
only two of these dimensions are included within a single CT 
slice. Gas and blood volumes within each region were there-
fore normalized to lung tissue mass. The ratio between the 
thoracic cavity and slice volumes was used as a scaling factor 
to approximate whole lung gas and blood values. Whole lung-
equivalent values were then divided by the per-animal mean 
lung tissue mass within each region measured using volume 
CT scans (Fig. 1C).

Fractional Atelectatic Mass
Whole lung volume DECT scans were obtained during end-
expiratory apneas in each ventilatory condition. Atelectatic 
subregions were defined as regions with gas volume fraction 
less than or equal to 0.1 (equivalent to regions ≥ –100 HU on 
single-energy noncontrast scans [18]). Volume and mean tis-
sue density (1–gas density) were used to calculate the masses 
of atelectatic subregions and the whole lung. The ratio of these 
two masses was termed fractional atelectatic mass in expira-
tion (FAM

exp
) (19) and used to categorize the ventilatory con-

ditions (FAM
exp

 < 20%, 20–40%, and ≥ 40%).

Statistical Analyses
Comparisons between two groups were performed using t test 
or Wilcoxon signed-rank test and those between three groups 
using Tukey test. Correlation between independent and de-
pendent variables was assessed with linear regression analysis 
following assessment of individual variables for normality and 
heteroscedasticity. Correlations involving FAM

exp
 were exam-

ined using Spearman rank correlation coefficient due to non-
normality in FAM

exp
.

http://links.lww.com/CCM/F147
http://links.lww.com/CCM/F147
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RESULTS
The DECT algorithm was 
validated in vitro and in vivo 
(Supplementary Figs. 1–5, 
Supplemental Digital Content 
1, http://links.lww.com/CCM/
F147). Briefly, the algorithm 
accurately predicted blood io-
dine concentrations in vitro  
(r2 = 0.998; p < 0.0001; n = 4) 
and provided reasonable agree-
ment in lung volume changes 
compared with spirometry 
in vivo (r2 = 0.92; mean error, 
–33 mL [95% CI, –38 to –28 
mL]; n = 8), without being af-
fected by cumulative iodine 
doses up to 9.2 g/kg or end-
expiratory lung volumes be-
tween 166 and 1,673 mL. Single 
slice mean tissue density was 
correlated with, but consistently 
less than, equivalent whole lung 
densities (r2 = 0.97; relative de-
crease 14.3% [13.4–15.2%];  
n = 7); this difference was con-
sistent between inspiration and 
expiration (n = 5). The imaged 
slice moved caudally during in-
spiration by a mean of 3.21 mm 
(2.76–3.66 mm), and it never 
moved by a distance greater 
than the adjacent slice moving 
into the CT image.

Baseline Characteristics 
and Cardiorespiratory 
Variables
Mean pulmonary ar-
tery pressure always 
exceeded mean airway 
pressure (mean difference 
20.3 mm Hg [7.2 mm Hg]).  
Cardiac output was 3.41 L/min 
(0.40 L/min), similar to the 
value of 3 L/min chosen to de-
termine iodine contrast infu-
sion rate. PEEP was positively 
correlated with peak airway 
pressure (r2 = 0.73) and neg-
atively correlated with FAM

exp
  

(ρ = –0.90). Data points from 
each of the seven animals 
were included within each 

Figure 1. Methodology. A, Schematic of dual-source CT scanner gantry showing two separate x-ray sources at 
90 degree offsets with example photon energies density distributions demonstrating minimal overlap between 
the two (140 kVp spectrum has low-energy photons attenuated by a 0.4 mm tin filter). Points A–D represent 
examples of imaged objects with distinct compositions. Point A is 100% gas and is reliably interpreted as 
–1,000 Hounsfield units (HU) at both energy levels. Point B, however, is composed of three different materials 
but is interpreted as 58 HU at 140 kVp, the same as a voxel comprising 100% soft tissue (point D). When 
points B and D are imaged at 80 kVp, they have different CT densities (78 and 62 HU), thus the materials 
can be differentiated. A similar argument exists for point C. B, In general, after plotting the CT densities of 
all voxels in an image (here one of the volume scans used for this paper), various distributions can be seen. 
Point E—100% gas; F—100% soft tissue; G—100% iodinated blood; H—CT scanner table; I—bone. All voxels 
containing a mix of purely gas and soft tissue fall along the identity line; however, if iodine is added, they are 
displaced from this line, thus allowing the composition of the voxel to be identified. C, Normalization of dynamic 
dual-energy CT (DECT) gas and iodinated blood volumes to lung tissue mass. Individual frames were scaled up 
to the size of the whole lung using a scale factor defined as the ratio of the entire thorax to the slice and then 
divided by the mass of soft tissue in the whole lung. Whole lung gas volumes were used to calculate fractional 
atelectatic mass in expiration, cyclical recruitment/derecruitment (R/D), and overdistended volume.

http://links.lww.com/CCM/F147
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FAM
exp

 group. Supplementary Tables 1–3 (Supplemental 
Digital Content 1, http://links.lww.com/CCM/F147) pre-
sent details of cardiorespiratory variables grouped by animal, 
PEEP, and FAM

exp
. The hysteresis between the limbs of the 

PEEP trial is presented in Supplementary Figure 6 (Supple-
mental Digital Content 1, http://links.lww.com/CCM/F147), 
and lung compliance and driving pressures throughout the 
PEEP trial presented in Supplementary Figure 7 (Supple-
mental Digital Content 1, http://links.lww.com/CCM/F147).

Effect of Inspiration Upon Gas and Iodinated Blood 
Volume Fractions
A gravitational effect on the distributions of gas, blood, and 
soft tissue volume fractions within the slice was seen (Figs. 2 
and 3). Iodinated blood and soft tissue predominated in the 
dependent regions and gas in the nondependent regions, this 
effect being more pronounced in the higher FAM

exp
 groups 

(Fig. 3). During inspiration, gas volume fraction increased in 
all FAM

exp
 groups and gravitational regions (all p ≤ 0.01), and 

blood volume fraction decreased (all p < 0.005). The effect of 
time into each individual scan sequence on iodinated blood 
volume fraction was minimal (increase of 0.0007 mL/cm3/s 
[0.4%/s]; p = 0.01; r2 = 0.006).

Effect of FAMexp Upon Expiratory Normalized Gas and 
Blood Volumes
Expiratory normalized gas volume (V

N
) was greatest in the 

nondependent region and least in the dependent region in all 
FAM

exp
 groups (Fig. 4A; all p < 0.0006), and higher within all 

regions in the FAM
exp

 less than 20% group compared with the 
other two FAM

exp
 groups (all p < 0.0008). Expiratory normal-

ized blood volume (Q
N
) was greatest in the middle region in all 

FAM
exp

 groups (Fig. 4B; all p < 0.0002). Within-region, expira-
tory Q

N
 was always highest in the FAM

exp
 less than 20% group 

compared with the greater than or equal to 40% group (all p 
< 0.027). Similar effects were seen when data were grouped by 
PEEP, with V

N
 and Q

N
 distributed within the low PEEP groups 

similarly to high FAM
exp

 groups (Supplementary Fig. 6, Supple-
mental Digital Content 1, http://links.lww.com/CCM/F147).

Effects of Inspiration Upon VN and QN

Inspiration was associated with an increase in V
N
 (ΔV

N
) within 

all regions in all FAM
exp

 groups (Figs. 3 and 4C; all p < 0.0003). 
The increase was greater in the nondependent region com-
pared with the dependent region in all cases (p < 0.0001; Fig. 
4C). The FAM

exp
 greater than or equal to 40% group demon-

strated the greatest variation in ΔV
N
 between the nondepen-

dent and dependent regions (818 µL/g [729–908 µL/g] vs 149 
µL/g [120–178 µL/g], respectively; p < 0.0001).

Total Q
N
 within the slice was not affected by inspiration 

(ΔQ
N
 in FAM

exp
 < 20% group: 5 µL/g [–1 to 12 µL/g]; FAM

exp
 

20–40%: –1 µL/g [–9 to 7 µL/g]; FAM
exp

 ≥ 40%: –6 µL/g [–15 
to 3 µL/g]). In the FAM

exp
 greater than or equal to 40% group, 

Q
N
 decreased in the nondependent (29 µL/g [12–46 µL/g];  

p = 0.02) and middle (28 µL/g [13–44 µL/g]; p = 0.01) regions, 
but increased in the dependent region (39 µL/g [30–48 µL/g];  

p < 0.001). In the FAM
exp

 20–40% group, ΔQ
N
 in the de-

pendent region was 26 µL/g (13–38 µL/g) (p = 0.01). There 
was no inspiration-related change in Q

N
 in any region in the 

FAM
exp

 less than 20% group (p = 0.5, 0.8, and 0.8; Fig. 4D).
A negative relationship between regional ΔV

N
 and ΔQ

N
 was 

observed in the FAM
exp

 greater than or equal to 40% (Fig. 5;  
r2 = 0.56) and FAM

exp
 20–40% (r2 = 0.40) groups. FAM

exp
 and 

ΔQ
N
 in the dependent region were positively correlated (ρ = 

0.79).

Effects Upon Pao2/Fio2 Ratio
Pao

2
/Fio

2
 (P/F) ratio was negatively correlated with both FAM

exp
  

(p < 0.0001; ρ = –0.93) and ΔQ
N
 in the dependent region  

(p < 0.0001; ρ = –0.77). The relationships were nonlinear in 
both cases (Fig. 6). Following log-transformation of P/F ratio 
values, a linear relationship with FAM

exp
 was demonstrated (r2 

= 0.87).

DISCUSSION
We found that inspiratory mechanical breaths at PEEP levels 
associated with clinically significant atelectasis and minimal 
tidal R/D cause a redistribution of pulmonary parenchymal 
blood volume toward poorly ventilated regions in experi-
mental collapse-prone lung injury. This phenomenon would 
increase shunt fraction beyond what would be expected from 
atelectasis alone and may represent a significant causal com-
ponent of the hypoxemia observed with low PEEP ventilation 
in ARDS (2).

Methodology Developed for This Study
We developed a DECT three-material differentiation algo-
rithm to quantify gas and blood volume fractions at the voxel 
level. The iodine infusion protocol caused near-constant opac-
ification of the entirety of the pulmonary vascular tree over 
the time course of the scan. The validity of the three-material 
differentiation algorithm was confirmed in vivo and in vitro 
(Supplementary Materials, Supplemental Digital Content 1, 
http://links.lww.com/CCM/F147), and the normalization pro-
cedure to convert volume fractions of gas or blood to volumes 
per unit mass of lung tissue produced V

N
 values with a typical 

gravitational gradient (Fig. 4A) and hysteresis (Supplemen-
tary Fig. 6, Supplemental Digital Content 1, http://links.lww.
com/CCM/F147). Following normalization to tissue mass, the 
middle region of the lung had the highest blood volume (Fig. 
4B). This agrees with MRI results in human volunteers, where 
perfusion per unit tissue mass was greatest in the middle grav-
itational region (6 mL/g/min) compared with the dependent 
and nondependent regions (4–5 mL/g/min) (20). Overall, 
these findings demonstrate the usefulness of our technique 
and the dependability of the results.

Intra-Tidal Blood Volume Redistribution
In conditions with large volume atelectasis (≥ 40% of lung 
mass), we demonstrated minimal tidal R/D (< 7% of lung 
mass). The majority of recruitment takes place over 2 seconds 
from the start of an end-inspiratory apnea; however, around 

http://links.lww.com/CCM/F147
http://links.lww.com/CCM/F147
http://links.lww.com/CCM/F147
http://links.lww.com/CCM/F147
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10% still takes longer than this 
(21, 22). We calculated tidal 
R/D based upon volume CT 
scans during prolonged end-
expiratory and end-inspira-
tory apneas (near-maximal 
derecruitment and recruit-
ment, respectively). The tidal 
R/D values reported here may, 
therefore, overestimate what 
was occurring during tidal 
ventilation with an inspiratory 
time of 2 seconds. We refer to 
the tidal R/D seen in our study 
as “minimal” because in the 
FAM

exp
 greater than or equal 

to 40% group, it represented 
around only 1/8 of the total 
atelectasis caused by PEEP var-
iations (Supplemental Table 3, 
Supplemental Digital Content 
1, http://links.lww.com/CCM/
F147). This greater effect of 
PEEP than Vt in the saline-
lavage model is in keeping with 
previous results (23).

In conditions of large volume 
of atelectasis with minimal tidal 
R/D, we demonstrated an inspi-
ration-related reduction in Q

N
 

within the nondependent and 
middle regions associated with a 
reciprocal increase in the most-
dependent region (Fig. 4D), in 
the context of no inspiration-
related change in total Q

N
. This 

suggests a cyclical redistribution 
of blood volume toward the 
most-dependent region during 
inspiration, then restored dur-
ing expiration. These results 
contrast those reported in an 
uninjured rabbit model, where 
blood volume redistributed 
from dependent to nondepen-
dent regions in inspiration (24). 
Apart from anatomical differ-
ences between models, an ex-
planation for these differences is 
that, unlike the earlier study, we 
studied a lung injury model and 
normalized the results to lung 
tissue mass.

Figure 2. Example source and post-processed images of a single juxtadiaphragmatic slice at positive end-
expiratory pressure 5 cm H2O of pig’s thorax during iodine infusion using the dual-energy CT (DECT) algorithm. 
A, Composite source images representing a 30:70 merge of 80 kVp and 140 kVp images displayed using 
standard CT lung windows. B, Results of the DECT three-material differentiation algorithm for gas (blue), soft 
tissue (green), and iodinated blood (red) volume fractions. C, The DECT images following segmentation to 
include only lung parenchyma with the three gravitational regions of interest displayed. Typical expiration and 
inspiration images are shown in each case. A gravitational effect was seen within the slice with soft tissue 
and iodinated blood concentrated toward the dependent regions, with a reduction in volume fractions of these 
materials in inspiration.

http://links.lww.com/CCM/F147
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The dependent region was ventilated least when significant 
atelectasis was present (Fig. 4C), in keeping with results from 
electrical impedance tomography, where decreasing PEEP 
(25) or inspiratory time (26) shifts the center of ventilation 
toward nondependent regions. Inspiratory positive pressures 
may be delivered only to ventilated alveoli and the inspira-
tion-associated decrease in alveolar vessel transmural pressure 
and volume only occurs in those regions of the lung that are 
ventilated, and therefore redistribution of blood to nonventi-
lated regions is likely (13). As the oxygen reservoir within the 
lungs is highest during inspiration, this redistribution of blood 
volume would increase shunt fraction. This mechanism could 
explain why some patients exhibit hypoxemia that is refractory 
to increases in inspired oxygen concentration and/or inspira-
tory time.

Effects of Blood Volume 
Redistribution on 
Oxygenation
Increase in CT-measured at-
electasis has a negative rela-
tionship with oxygenation (27) 
and with the P/F log-transform 
(28), as confirmed here (Fig. 
6A). Furthermore, we demon-
strated a negative relationship 
between the increase in blood 
volume within the dependent 
region during inspiration and 
oxygenation (Fig. 6B).

Due to multicollinearity be-
tween FAM

exp
 and intra-tidal 

pulmonary blood volume 
redistribution, identifying 
the relative contributions of 
these two determinants of hy-
poxemia is challenging. This 
finding raises an interesting 
question: is it the presence of 
atelectasis that causes hypox-
emia in ARDS, or is intra-tidal 
redistribution of blood to 
atelectatic lung an additional 
requirement?

Limitations
We measured aeration and 
blood volume, surrogates of 
ventilation and perfusion. Re-
gional ventilation can be de-
rived using our technique by 
measuring aeration in both 
inspiration and expiration. 
Perfusion is more difficult 
to measure, however, DECT-
derived pulmonary blood 
volume can approximate per-

fusion (measured by contrast-bolus dynamic CT) with a mean 
correlation coefficient of 0.7 (29).

We imaged one slice rather than the whole lung due to lim-
itations in current technology. The slice we chose reasonably 
approximates the lung in terms of atelectatic fractions (30) and 
density distributions (31) and has been used to quantify atelec-
tatic lung in both the uninjured animal (23, 32) and that with 
lung injury (23, 33). We demonstrated that while the single slice 
underestimated lung density, it did so by a consistent amount 
between inspiration and expiration (Supplementary Results, 
Supplemental Digital Content 1, http://links.lww.com/CCM/
F147) such that our final outcome variables (ΔV

N
 and ΔQ

N
) 

were likely similar to those seen for the whole lung. The min-
imal inspiration-related caudal displacement of the slice is also 
reassuring for the validity of these results.

Figure 3. Effects of inspiration on the volume fractions and normalized volumes of gas and iodinated blood 
within the juxtadiaphragmatic slice over the course of two respiratory cycles. Results are presented for the 
three different gravitational regions of the studied slice and grouped by fractional atelectatic mass of the lung 
in expiration (FAMexp). Airway pressure traces are provided for comparison, and gray background denotes 
inspiration. In all regions and all FAMexp groups gas volume fraction and normalized gas volume increased 
(p ≤ 0.01) and blood volume fraction decreased (p < 0.005) during inspiration. The effects of inspiration 
on normalized blood volume were most pronounced in the FAMexp greater than or equal to 40% group, with 
normalized blood volume decreasing in the middle and nondependent regions and increasing in the dependent 
region. Points represent mean and sd.

http://links.lww.com/CCM/F147
http://links.lww.com/CCM/F147
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The saline-lavage surfactant-depletion lung injury model 
demonstrates significant recoverability with both time since 
injury and application of high PEEP (34, 35). As we used PEEP 
purely to generate differing amounts of atelectasis in the ani-
mals, any recovery was accounted for by the use of FAM

exp
 as a 

grouping variable, rather than PEEP itself. Additionally, we in-
verted the PEEP sequence in two animals to minimize any bias 
induced by recovery purely due to time from injury. The in-
herent effects of PEEP and inspiratory pressures upon regional 
blood volume may differ between models, however, and these 
results should be confirmed in other lung injury models, such 
as those which demonstrate other aspects of ARDS including 
regions of nonrecruitable lung.

We investigated a limited number of ventilatory conditions 
(dorsal recumbency, and fixed respiratory rate and Vt). The 
respiratory rate could not be increased above 10 min–1 due to 
the current maximum dDECT scanning frequency of 1 Hz. 
The Vt of 10 mL/kg is reasonable given the greater resting Vt 

and minute ventilation of the pig compared with humans (36). 
Dorsal recumbency was chosen as the majority of patients with 
ARDS are ventilated supine with prone positioning reserved 
as rescue therapy (37). These results should be confirmed in 
other ventilatory conditions, particularly Vt variations.

CONCLUSIONS
We demonstrated a redistribution of pulmonary blood volume 
away from well-ventilated regions of lung during inspiration 
in experimental lung injury at PEEP levels associated with sig-
nificant atelectasis and minimal tidal R/D. This redistribution 
was associated with a clinically significant reduction in P/F 
ratio. This intra-tidal pulmonary blood volume redistribu-
tion has not previously been demonstrated during mechanical 
ventilation at clinically-relevant respiratory rates. It may be a 
putative explanation for the reduced Pao

2
 seen in low PEEP 

ventilation in ARDS (2), and could potentially explain the large 
intra-tidal Pao

2
 oscillations seen in experimental lung injury 

Figure 4. Absolute and relative changes in expiratory normalized gas (VN) and blood volumes (QN). VN (A) and QN (B) within each region, and fractional 
expiratory mass of the lung in expiration (FAMexp) grouping. C, Effects of an inspiratory breath upon VN. In the higher FAMexp groups there is relatively less 
ventilation occurring in the dependent regions. D, Effects of an inspiratory breath upon QN. Minimal change was seen in normalized blood volume in the 
FAMexp less than 20% group, however, in the other conditions the normalized blood volume in the dependent region increased and those in the others 
decreased with inspiration. Points represent mean and either sd (A and B) or 95% CI of change (C and D).
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(32, 33, 38–40). Further work examining mechanical ventila-
tory strategies in ARDS should also examine their effects on 
pulmonary blood volume distribution, which is also relevant 
for oxygenation.

ACKNOWLEDGMENTS
We are grateful to Agneta Roneus, Kerstin Ahlgren, Mariette An-
derson, Liselotte Pihl, Maria Swälas, and Monica Segelsjö at Upp-
sala University Hospital for their expertise and technical assistance; 

Figure 5. Relationship between the inspiratory change in normalized gas and blood volumes dependent upon fraction of the mass of the entire lung 
that was atelectatic in expiration (FAMexp). For FAMexp less than 20% minimal relationship was seen; however, within the other two groups there was a 
clear negative relationship: those regions with the least ventilation received an increase in blood volume and those with the most ventilation a decrease, 
suggestive of an inspiration-related redistribution that worsened ventilation-perfusion matching.

Figure 6. Pao2/Fio2 (P/F) values associated with atelectasis and blood volume redistribution. Effect of atelectasis (A) and intra-tidal normalized blood 
volume redistribution toward the dependent region (B) upon P/F ratio. P/F ratio was negatively correlated with both measures in a nonlinear fashion 
(Spearman ρ = –0.93 and –0.77, respectively) and the log-transform of P/F ratio was linearly related to atelectasis (r2 = 0.87). Box-and-whisker plots 
represent median, interquartile range and range for the three different fractional atelectatic mass in expiration (FAMexp) groups studied (A) and between 
those conditions that demonstrated either an inspiration-related reduction or increase in blood volume in the dependent region (B).



Online Clinical Investigation

Critical Care Medicine www.ccmjournal.org 9

Clive Hahn, Keith Dorrington, Peter Robbins, and Jose Venegas 
for helpful discussions and Oxford Optronix for technical sup-
port. Finally, we are thankful to the unnamed reviewers who have 
provided highly constructive advice to improve this article.

REFERENCES
 1. Slutsky AS, Ranieri VM: Ventilator-induced lung injury. N Engl J Med 

2013; 369:2126–2136
 2. Goligher EC, Kavanagh BP, Rubenfeld GD, et al: Oxygenation re-

sponse to positive end-expiratory pressure predicts mortality in acute 
respiratory distress syndrome. A secondary analysis of the LOVS and 
ExPress trials. Am J Respir Crit Care Med 2014; 190:70–76

 3. Sahetya SK, Goligher EC, Brower RG: Fifty years of research in 
ARDS. Setting positive end-expiratory pressure in acute respiratory 
distress syndrome. Am J Respir Crit Care Med 2017; 195:1429–
1438

 4. Ashbaugh DG, Bigelow DB, Petty TL, et al: Acute respiratory distress 
in adults. Lancet 1967; 2:319–323

 5. Mercat A, Richard JC, Vielle B, et al; Expiratory Pressure (Express) 
Study Group: Positive end-expiratory pressure setting in adults with 
acute lung injury and acute respiratory distress syndrome: A random-
ized controlled trial. JAMA 2008; 299:646–655

 6. Meade MO, Cook DJ, Guyatt GH, et al; Lung Open Ventilation Study 
Investigators: Ventilation strategy using low tidal volumes, recruitment 
maneuvers, and high positive end-expiratory pressure for acute lung 
injury and acute respiratory distress syndrome: A randomized con-
trolled trial. JAMA 2008; 299:637–645

 7. Villar J, Kacmarek RM, Pérez-Méndez L, et al: A high positive end-
expiratory pressure, low tidal volume ventilatory strategy improves 
outcome in persistent acute respiratory distress syndrome: A random-
ized, controlled trial. Crit Care Med 2006; 34:1311–1318

 8. Amato MB, Barbas CS, Medeiros DM, et al: Effect of a protective-
ventilation strategy on mortality in the acute respiratory distress syn-
drome. N Engl J Med 1998; 338:347–354

 9. Fougères E, Teboul JL, Richard C, et al: Hemodynamic impact of a 
positive end-expiratory pressure setting in acute respiratory distress 
syndrome: Importance of the volume status. Crit Care Med 2010; 
38:802–807

 10. Dantzker DR, Lynch JP, Weg JG: Depression of cardiac output is 
a mechanism of shunt reduction in the therapy of acute respiratory 
failure. Chest 1980; 77:636–642

 11. Cavalcanti AB, Suzumura EA, Laranjeira LN, et al: Effect of lung re-
cruitment and titrated positive end-expiratory pressure (PEEP) vs low 
PEEP on mortality in patients with acute respiratory distress syn-
drome: A randomized clinical trial. JAMA 2017; 318:1335–1345

 12. Villagrá A, Ochagavía A, Vatua S, et al: Recruitment maneuvers during 
lung protective ventilation in acute respiratory distress syndrome. Am 
J Respir Crit Care Med 2002; 165:165–170

 13. Musch G, Harris RS, Vidal Melo MF, et al: Mechanism by which a 
sustained inflation can worsen oxygenation in acute lung injury. Anes-
thesiology 2004; 100:323–330

 14. McCollough CH, Leng S, Yu L, et al: Dual- and multi-energy CT: Prin-
ciples, technical approaches, and clinical applications. Radiology 
2015; 276:637–653

 15. Thieme SF, Johnson TR, Lee C, et al: Dual-energy CT for the assess-
ment of contrast material distribution in the pulmonary parenchyma. 
AJR Am J Roentgenol 2009; 193:144–149

 16. Thieme SF, Hoegl S, Nikolaou K, et al: Pulmonary ventilation and 
perfusion imaging with dual-energy CT. Eur Radiol 2010; 20:2882–
2889

 17. Kilkenny C, Browne WJ, Cuthill IC, et al: Improving bioscience re-
search reporting: The ARRIVE guidelines for reporting animal re-
search. PLoS Biol 2010; 8:e1000412

 18. Gattinoni L, Pesenti A, Bombino M, et al: Relationships between lung 
computed tomographic density, gas exchange, and PEEP in acute 
respiratory failure. Anesthesiology 1988; 69:824–832

 19. Wolf SJ, Reske AP, Hammermüller S, et al: Correlation of lung col-
lapse and gas exchange - a computer tomographic study in sheep 

and pigs with atelectasis in otherwise normal lungs. PLoS One 2015; 
10:e0135272

 20. Hopkins SR, Henderson AC, Levin DL, et al: Vertical gradients in 
regional lung density and perfusion in the supine human lung: The 
Slinky effect. J Appl Physiol (1985) 2007; 103:240–248

 21. Neumann P, Berglund JE, Fernández Mondéjar E, et al: Dynamics of 
lung collapse and recruitment during prolonged breathing in porcine 
lung injury. J Appl Physiol (1985) 1998; 85:1533–1543

 22. Markstaller K, Eberle B, Kauczor HU, et al: Temporal dynamics of lung 
aeration determined by dynamic CT in a porcine model of ARDS. Br 
J Anaesth 2001; 87:459–468

 23. David M, Karmrodt J, Bletz C, et al: Analysis of atelectasis, ventilated, 
and hyperinflated lung during mechanical ventilation by dynamic CT. 
Chest 2005; 128:3757–3770

 24. Porra L, Broche L, Dégrugilliers L, et al: Synchrotron imaging shows 
effect of ventilator settings on intrabreath cyclic changes in pulmonary 
blood volume. Am J Respir Cell Mol Biol 2017; 57:459–467

 25. Zick G, Elke G, Becher T, et al: Effect of PEEP and tidal volume on 
ventilation distribution and end-expiratory lung volume: A prospec-
tive experimental animal and pilot clinical study. PLoS One 2013; 
8:e72675

 26. Boehme S, Bentley AH, Hartmann EK, et al: Influence of inspiration to 
expiration ratio on cyclic recruitment and derecruitment of atelectasis 
in a saline lavage model of acute respiratory distress syndrome. Crit 
Care Med 2015; 43:e65–e74

 27. Markstaller K, Kauczor HU, Weiler N, et al: Lung density distribution in 
dynamic CT correlates with oxygenation in ventilated pigs with lavage 
ARDS. Br J Anaesth 2003; 91:699–708

 28. Reske AW, Costa EL, Reske AP, et al: Bedside estimation of nonaer-
ated lung tissue using blood gas analysis. Crit Care Med 2013; 
41:732–743

 29. Kay FU, Beraldo MA, Nakamura MAM, et al: Quantitative dual-energy 
computed tomography predicts regional perfusion heterogeneity in a 
model of acute lung injury. J Comput Assist Tomogr 2018; 42:866–
872

 30. Bletz C, Markstaller K, Karmrodt J, et al: [Quantification of atelecta-
ses in artificial respiration: Spiral-CT versus dynamic single-slice CT]. 
Rofo 2004; 176:409–416

 31. Zinserling J, Wrigge H, Neumann P, et al: Methodologic aspects of 
attenuation distributions from static and dynamic thoracic CT tech-
niques in experimental acute lung injury. Chest 2005; 128:2963–
2970

 32. Formenti F, Bommakanti N, Chen R, et al: Respiratory oscillations in 
alveolar oxygen tension measured in arterial blood. Sci Rep 2017; 
7:7499

 33. Crockett DC, Cronin JN, Bommakanti N, et al: Tidal changes in PaO2 
and their relationship to cyclical lung recruitment/derecruitment in a 
porcine lung injury model. Br J Anaesth 2019; 122:277–285

 34. Ballard-Croft C, Wang D, Sumpter LR, et al: Large-animal models 
of acute respiratory distress syndrome. Ann Thorac Surg 2012; 
93:1331–1339

 35. Kloot TE, Blanch L, Melynne Youngblood A, et al: Recruitment maneu-
vers in three experimental models of acute lung injury. Effect on 
lung volume and gas exchange. Am J Respir Crit Care Med 2000; 
161:1485–1494

 36. Hannon J, Bossone C, Wade C: Normal physiological values for 
conscious pigs used in biomedical research. Institute report (USA) 
1989; 379:293–298

 37. Pelosi P, Brazzi L, Gattinoni L: Prone position in acute respiratory dis-
tress syndrome. Eur Respir J 2002; 20:1017–1028

 38. Baumgardner JE, Markstaller K, Pfeiffer B, et al: Effects of respiratory 
rate, plateau pressure, and positive end-expiratory pressure on PaO2 
oscillations after saline lavage. Am J Respir Crit Care Med 2002; 
166:1556–1562

 39. Formenti F, Chen R, McPeak H, et al: Intra-breath arterial oxygen oscil-
lations detected by a fast oxygen sensor in an animal model of acute 
respiratory distress syndrome. Br J Anaesth 2015; 114:683–688

 40. Williams EM, Viale JP, Hamilton RM, et al: Within-breath arterial PO2 
oscillations in an experimental model of acute respiratory distress syn-
drome. Br J Anaesth 2000; 85:456–459


