Regulation of human metabolism by hypoxia-inducible factor

Federico Formenti1,2, Dumitru Constantin-Teodosiu3, Yaso Emmanuel4, Jane Cheeseman5, Keith L. Dorrington6, Lindsay M. Edwards5, Sandy M. Humphreys3, Terence R. J. Lappin7, Mary F. McMullin3, Christopher J. McNamara8, Wendy Mills9, John A. Murphy9, David F. O’Connor9, Melanie J. Percy9, Peter J. Ratcliffe1, Thomas G. Smith9, Marilyn Treacy1, Keith N. Frayn10, Paul L. Greenhaff10, Fredrik Karpe11, Kieran Clarke12, and Peter A. Robbins13,14

1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom; 2School of Biomedical Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom; 3Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, United Kingdom; 4Centre for Cancer Research and Cell Biology and 5Department of Haematology, Queen’s University, Belfast City Hospital, Belfast BT9 7AD, United Kingdom; 6Department of Haematology, Royal Free Hospital, Hampstead NW3 2QG, United Kingdom; 7Newham University Hospital, London E13 8SG, United Kingdom; 8Department of Haematology, Monklands Hospital, Airdrie ML6 0JS, United Kingdom; 9NuField Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom; 10Diagnostics, Therapies and Cancer Division, Barnet and Chase Farm Hospitals, Middlesex EN2 8JL, United Kingdom; and 11National Institute of Health Research Oxford Biomedical Research Centre, Churchill Hospital, Oxford

Radicliffes Hospitals Trust, Oxford OX3 7LJ, United Kingdom

Edited by William G. Kaelin, Harvard Medical School, Boston, MA, and approved June 3, 2010 (received for review February 26, 2010)

The hypoxia-inducible factor (HIF) family of transcription factors directs a coordinated cellular response to hypoxia that includes the transcriptional regulation of a number of metabolic enzymes. Chuvash polycythemia (CP) is an autosomal recessive human disorder in which the regulatory degradation of HIF is impaired, resulting in elevated levels of HIF at normal oxygen tensions. Apart from the polycythemia, CP patients have marked abnormalities of cardiopulmonary function. No studies of integrated metabolic function have been reported. Here we describe the response of these patients to a series of metabolic stresses: exercise of a large muscle mass on a cycle ergometer, exercise of a small muscle mass (calf muscle) which allowed noninvasive in vivo assessments of muscle metabolism using 31P magnetic resonance spectroscopy, and a standard meal tolerance test. During exercise, CP patients had early and marked phosphocreatine depletion and acidosis in skeletal muscle, greater accumulation of lactate in blood, and reduced maximum exercise capacities. Muscle biopsy specimens from CP patients showed elevated levels of transcript for pyruvate dehydrogenase kinase, phosphofructokinase, and muscle pyruvate kinase. In cell culture, a range of experimental protocols investigating integrated responses at the level of the whole organism. No studies of integrated metabolic function have been reported. Here we describe the response of these patients to a series of metabolic stresses: exercise of a large muscle mass on a cycle ergometer, exercise of a small muscle mass (calf muscle) which allowed noninvasive in vivo assessments of muscle metabolism using 31P magnetic resonance spectroscopy, and a standard meal tolerance test. During exercise, CP patients had early and marked phosphocreatine depletion and acidosis in skeletal muscle, greater accumulation of lactate in blood, and reduced maximum exercise capacities. Muscle biopsy specimens from CP patients showed elevated levels of transcript for pyruvate dehydrogenase kinase, phosphofructokinase, and muscle pyruvate kinase. In cell culture, a range of experimental manipulations have been used to study the effects of HIF on cellular metabolism. However, these approaches provide no potential to investigate integrated responses at the level of the whole organism. Although CP is relatively subtle disorder, our study now reveals a striking regulatory role for HIF on metabolism during exercise in humans. These findings have significant implications for the development of therapeutic approaches targeting the HIF pathway.

exercise | lactate | glycolysis | Chuvash polycythemia | von Hippel-Lindau

The hypoxia-inducible factor (HIF) family of transcription factors plays a key role in orchestrating the cellular response to varying levels of oxygen. These transcription factors are heterodimeric proteins consisting of two subunits: an oxygen-regulated HIF-α subunit (HIF-1α, HIF-2α, or HIF-3α) and a constitutive HIF-β subunit (1). At physiological levels of oxygen, HIF-α subunits undergo rapid degradation, limiting the formation of the transcription complex (2). Degradation is initiated by hydroxylation of HIF-α protein by specific prolyl hydroxylases (3–5). This hydroxylation enables binding of the von Hippel–Lindau (VHL) protein (6, 7) and the subsequent degradation of HIF-α by the ubiquitin–proteasome system. At low levels of oxygen, the rate of hydroxylation of HIF-α is reduced. This reduction impairs the binding of VHL to HIF-α, enabling accumulation of transcriptionally active HIF complexes within the cell. Many HIF target genes have been identified in metabolic and other cellular functions (for review see refs. 8–10). In metabolism, an early finding was a role for HIF in the transcriptional regulation of genes encoding enzymes of the glycolytic pathway (11). Subsequent experiments in cell culture also identified a role for HIF in (i) downregulating mitochondrial oxygen consumption by directly or indirectly inducing pyruvate dehydrogenase kinase (PDK), which inhibits the mitochondrial pyruvate dehydrogenase complex (PDC) from converting pyruvate into acetyl-CoA (12–14); (ii) regulating the differential expression of cytochrome c oxidase subunit 4 isofoms to optimize the efficiency of respiration at different O2 tensions (15); and (iii) inducing mitochondrial autophagy as an adaptive response to hypoxia (16). However, these observations thus far have been restricted mainly to cell culture, and their significance (or lack thereof) for the intact organism remains largely unexplored.

In humans, an opportunity to understand the effects of altered HIF physiology on integrated metabolic function is afforded by the condition of Chuvash polycythemia (CP). CP is an autosomal recessive disorder that is endemic to the region of Chuvashia (17) in the central European part of Russia. Individuals affected with CP have a homozygous germline mutation in exon 3 of the VHL gene (VHL 598C→T), which impairs the binding of the gene product VHL to HIF-α subunits. This impairment reduces the rate of HIF-α degradation and results in the stabilization of the HIF complex and increased expression of HIF-target genes under normoxic conditions (18, 19). Studies of patients with CP have revealed high hematocrit and hemoglobin values, elevated pulmonary arterial blood pressures, reduced systemic arterial pressures, and marked increases in the sensitivity of the respiratory system and the pulmonary vasculature to acute exposures to hypoxia (17, 18, 20). However, no metabolic measures have been reported in any of these studies.

In this study, we set out to determine whether any abnormalities of metabolism in patients with CP could be detected by exposing patients to the metabolic stress of exercise and of a standardized meal. In particular, we measured overall exercise capacity through an incremental exercise test on a cycle ergometer; calf muscle energy metabolites during light exercise by...
means of 31P magnetic resonance spectroscopy (MRS); the metabolic response (arterial and venous blood metabolites) to the consumption of a standardized meal; and in vitro skeletal muscle fiber composition, enzyme activities, and mRNA expression levels from biopsy samples obtained at rest. The results demonstrate that, under conditions of enhanced metabolic activity, CP patients generate substantially more lactate than control participants. Some, but not all, of the effects predicted from studies of the HIF system in cell culture were observed in vivo in humans who had CP.

Results

The age, sex, height, weight, body mass index, amount of physical exercise per week, and hematocrit for the CP patients and control participants are given in Table 1. Control participants were well matched for levels of physical activity in their daily life, body mass index, and age.

CP Increases Lactate Production During Exercise and Limits Overall Exercise Capacity. Fig. 1 illustrates mean values for venous lactate concentration, end-tidal partial pressure of carbon dioxide, and ventilation as a function of work rate during the incremental exercise test. Venous blood lactate concentration increased early in the CP patients, becoming significantly higher than in the control group at \sim4 min into the exercise test at a work rate of 80 W. CP patients stopped exercising at lower work rates than controls. The maximum work rates achieved per kg of body mass (reported in Table 1) were significantly lower for the CP patients, around 70% of those achieved by the control participants. There was no correlation between maximum work rate and hematocrit in the CP group. The end-tidal partial pressure of carbon dioxide was significantly lower in the CP group at rest and remained so throughout the exercise protocol. Furthermore, ventilation rose more rapidly during exercise in the CP patients than in the control participants.

CP Causes Marked Phosphocreatine Depletion, Inorganic Phosphate Elevation, and Fall in pH During Calf Muscle Exercise. Fig. 2 illustrates 31P MR spectra for a representative control participant and a representative CP patient at rest and during calf exercise. At rest, the spectra from the two individuals appeared similar. However, during exercise, the phosphocreatine (PCr) peak almost disappeared, and the inorganic phosphate (Pi) peak was markedly higher in the CP patient than in the control participant. Similar results were obtained in all subjects within each group.

Mean values for PCr, Pi, and pH for the CP and for the control groups during the three periods of calf exercise and intervening periods of rest are shown in Fig. 3. In the CP group, marked depletion of muscle PCr and elevation of Pi was evident even at the lowest level of exercise. These effects were significant at all work rates, and even the lightest work rate (3 W) caused a greater depletion of PCR and elevation of Pi in the CP group than did the heaviest work rate (5 W) in the control group. Similarly, at all three levels of exercise, the fall in muscle pH in the CP group far exceeded the fall in muscle pH in the control participants. Again, this effect was such that the fall in pH at the lowest level of exercise in the CP group greatly exceeded the fall in pH at even the heaviest level of exercise in the control group. Muscle ATP concentration decreased in both groups in response to exercise, but its concentration did not differ significantly between the two groups at any level of exercise.

CP Is Associated with Elevated mRNA Levels of Muscle Phosphofructokinase, Muscle Pyruvate Kinase, and PDK in Skeletal Muscle. Protein expression levels for the isoforms of myosin heavy chain, indicative of muscle fiber composition, are shown in Fig. S1. No significant differences were found between the CP group and the control group for the proportions of type I, IIA, IIX, and IIB fibers.

No significant differences were detected in muscle glycogen concentration, PDC total activity (PDC), glutamate dehydrogenase (GluDH), citrate synthase (CS), 3-hydroxyacyl-CoA dehydrogenase (HAD), glyceraldehyde 3 phosphate dehydrogenase (GlyPDH), myosin heavy chains, and myosin light chains in control participants and CP patients (Table 2).

At the mRNA level, a significant increase in CP patients’ transcript levels was observed for muscle phosphofructokinase (PFKM), muscle pyruvate kinase (PKM) isoforms M1 (M1-PKM) and M2 (M2-PKM), and PDK isoforms 1 (PDK1), 2 (PDK2), and 4 (PDK4) (Table 3). Transcript levels did not differ significantly for hexokinase isoforms 1 (HK1) and 2 (HK2), pyruvate dehydrogenase phosphatase isoforms 1 (PDP1) and 2 (PDP2), pyruvate dehydrogenase kinase isoform 3 (PDK3), and lactate dehydrogenase A (LDHA).

CP Alters Pyruvate and Lactate Concentrations in Blood During the Digestion of a Standard Meal. Fig. S2 illustrates the changes in mean arterial concentrations for plasma glucose, plasma insulin, plasma pyruvate, and blood lactate following the standard meal tolerance test. The changes in glucose and insulin did not differ

Table 1. Individual and group characteristics of Chuvash polycythemia patients and control participants

<table>
<thead>
<tr>
<th>Participant</th>
<th>Age (y)</th>
<th>Sex</th>
<th>Height (m)</th>
<th>Weight (kg)</th>
<th>Body mass index (kg m$^{-2}$)</th>
<th>Exercise per week (h)</th>
<th>Maximum work rate (W/kg)</th>
<th>Hematocrit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control #1</td>
<td>22</td>
<td>M</td>
<td>1.80</td>
<td>79</td>
<td>24</td>
<td><3</td>
<td>3.5</td>
<td>42</td>
</tr>
<tr>
<td>Chuvash #1</td>
<td>21</td>
<td>M</td>
<td>1.77</td>
<td>58</td>
<td>19</td>
<td><3</td>
<td>3.1</td>
<td>62</td>
</tr>
<tr>
<td>Control #2</td>
<td>22</td>
<td>M</td>
<td>1.83</td>
<td>72</td>
<td>21</td>
<td><3</td>
<td>4.2</td>
<td>45</td>
</tr>
<tr>
<td>Chuvash #2</td>
<td>22</td>
<td>M</td>
<td>1.71</td>
<td>65</td>
<td>22</td>
<td><3</td>
<td>2.5</td>
<td>64</td>
</tr>
<tr>
<td>Control #3</td>
<td>24</td>
<td>M</td>
<td>1.77</td>
<td>75</td>
<td>24</td>
<td><3</td>
<td>3.7</td>
<td>45</td>
</tr>
<tr>
<td>Chuvash #3</td>
<td>25</td>
<td>M</td>
<td>1.72</td>
<td>61</td>
<td>21</td>
<td><3</td>
<td>3.3</td>
<td>41</td>
</tr>
<tr>
<td>Control #4</td>
<td>44</td>
<td>F</td>
<td>1.71</td>
<td>67</td>
<td>23</td>
<td><3</td>
<td>3.3</td>
<td>36</td>
</tr>
<tr>
<td>Chuvash #4</td>
<td>34</td>
<td>F</td>
<td>1.52</td>
<td>69</td>
<td>20</td>
<td><3</td>
<td>1.4</td>
<td>48</td>
</tr>
<tr>
<td>Control #5</td>
<td>46</td>
<td>F</td>
<td>1.61</td>
<td>65</td>
<td>25</td>
<td><3</td>
<td>2.2</td>
<td>39</td>
</tr>
<tr>
<td>Chuvash #5</td>
<td>38</td>
<td>F</td>
<td>1.63</td>
<td>52</td>
<td>20</td>
<td><3</td>
<td>1.5</td>
<td>41</td>
</tr>
<tr>
<td>Mean control</td>
<td>32</td>
<td></td>
<td>1.74</td>
<td>72</td>
<td>23</td>
<td><3</td>
<td>3.4</td>
<td>42</td>
</tr>
<tr>
<td>SD Control</td>
<td>12</td>
<td></td>
<td>0.09</td>
<td>6</td>
<td>2</td>
<td><3</td>
<td>0.8</td>
<td>4</td>
</tr>
<tr>
<td>Mean Chuvash</td>
<td>28</td>
<td></td>
<td>1.67</td>
<td>61</td>
<td>22</td>
<td><3</td>
<td>2.4*</td>
<td>51</td>
</tr>
<tr>
<td>SD Chuvash</td>
<td>8</td>
<td></td>
<td>0.10</td>
<td>6</td>
<td>4</td>
<td><3</td>
<td>0.9</td>
<td>11</td>
</tr>
</tbody>
</table>

Age, sex, height, weight, body mass index, amount of physical exercise per week, maximum work rate achieved during the incremental test on the cycle ergometer, and hematocrit.

*The results for the CP group are significantly different ($P < 0.05$) from those for the control group.
The corresponding value for the control participants is significant from the CP patients. The underlying average value for the CP patients differs significantly from that of the control participants. Work rates are reported in Table 1. Horizontal lines indicate that each underlying average value for the CP patients differs significantly from the corresponding value for the control participants. *P < 0.05; **P < 0.01.

Significantly between the CP group and the control group, however, the increases in plasma pyruvate and blood lactate 60 min after ingestion of the standardized meal were significantly greater in the CP group than in the control group. At 60 min, the plasma pyruvate concentration was 251 ± 64 μM (mean ± SD) in the CP group compared with 122 ± 51 μM in the control group, and the blood lactate was 1.74 ± 0.27 mM in the CP group compared with 0.87 ± 0.37 mM in the control group.

Fig. S2 illustrates forearm blood flow during the standard meal tolerance test. No significant effects of the meal were detected, nor were there any significant differences between the CP group and the control group. Also illustrated in Fig. S2 are the uptakes of glucose and lactate by skeletal muscle. These uptakes increased after the meal. With the exception of one data point, no significant differences were detected between the CP group and the control group.

Discussion

This study demonstrates that a functional mutation within the HIF–VHL pathway can have a significant effect on human energy metabolism at the level of the organism as a whole. In particular, the study demonstrates that exercise, whether involving a large or a small muscle mass, is a substantial metabolic stress for patients with CP, who exhibit significantly greater lactate accumulation than normal controls. Compared with normal controls, CP patients had low maximum exercise capacities and demonstrated early and greater PCr depletion and acidosis during a light ankle plantar-flexion exercise. In patients with CP, skeletal muscle mRNA expression levels at rest were elevated for enzymes of glycolysis and PDC inhibition.

In normal healthy volunteers, maximal oxygen uptake capacity is a significant determinant of both the maximum exercise capacity and the work rate at which blood lactate begins to rise (21). In patients with CP a degree of pulmonary hypertension (20) could limit the rise in cardiac output with exercise and so cause low maximum exercise capacity and early lactate production from muscle. We did not record pulmonary arterial blood pressure in this study and so do not know how much it may have risen during the incremental exercise test. However, we studied energy metabolism in a small muscle mass during light exercise, in which CP patients demonstrated a striking depletion of PCr in muscle, accumulation of Pi, and marked muscle acidosis compared with the normal controls. Because these findings were associated with light exercise of a small muscle mass, they suggest that cardiopulmonary limitations to the delivery of oxygen are an unlikely explanation for the abnormal metabolism. The light level of exercise also makes it unlikely that the results are caused by diffusional limitations for oxygen within the muscle. Finally, three of the five patients were not noticeably polycythemic (because of clinical management via venesection), and therefore viscosity changes in blood are not likely to have limited the supply of oxygen. This last point is supported by the absence of any correlation between hematocrit and maximum work rate in the CP group.

Skeletal muscle that contains a high proportion of fast-twitch (type II) white muscle fibers is more likely to metabolize anaerobically during exercise and so produce more lactate and have greater PCr depletion at the onset of contraction. Thus a further possibility is that the skeletal muscle of CP patients may contain more type II fibers than normal controls.
a high proportion of such fibers. However, this hypothesis was not supported by the biopsy results, which demonstrated almost identical proportions of fiber types in the CP patients and the normal controls.

A further possibility is that CP patients are limited in their exercise capacity not by the availability of oxygen but rather by their capacity to use oxygen. This diminished capacity could arise through limitations in substrate supply to the tricarboxylic acid cycle; PDCt, pyruvate dehydrogenase complex total activity.

Table 2. Results from the skeletal muscle biopsy for Chuvash polycythemia patients and control participants

<table>
<thead>
<tr>
<th>Participant</th>
<th>Glycogen</th>
<th>PDCt</th>
<th>CS</th>
<th>HAD</th>
<th>GlyPDH</th>
<th>MHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control #1</td>
<td>384</td>
<td>9.1</td>
<td>9.9</td>
<td>39.0</td>
<td>20.2</td>
<td>4917</td>
</tr>
<tr>
<td>Chuvash #1</td>
<td>406</td>
<td>4.8</td>
<td>7.9</td>
<td>48.5</td>
<td>17.5</td>
<td>6147</td>
</tr>
<tr>
<td>Control #2</td>
<td>430</td>
<td>3.8</td>
<td>6.7</td>
<td>36.2</td>
<td>16.3</td>
<td>6421</td>
</tr>
<tr>
<td>Chuvash #2</td>
<td>251</td>
<td>2.0</td>
<td>5.4</td>
<td>46.3</td>
<td>16.0</td>
<td>6246</td>
</tr>
<tr>
<td>Control #3</td>
<td>346</td>
<td>7.9</td>
<td>4.0</td>
<td>37.2</td>
<td>7.4</td>
<td>3597</td>
</tr>
<tr>
<td>Chuvash #3</td>
<td>323</td>
<td>4.5</td>
<td>9.4</td>
<td>65.7</td>
<td>27.8</td>
<td>6297</td>
</tr>
<tr>
<td>Control #4</td>
<td>601</td>
<td>13.0</td>
<td>14.3</td>
<td>118.1</td>
<td>36.0</td>
<td>5868</td>
</tr>
<tr>
<td>Chuvash #4</td>
<td>349</td>
<td>5.5</td>
<td>6.6</td>
<td>36.1</td>
<td>27.8</td>
<td>4773</td>
</tr>
<tr>
<td>Control #5</td>
<td>500</td>
<td>4.4</td>
<td>6.9</td>
<td>32.4</td>
<td>10.4</td>
<td>6072</td>
</tr>
<tr>
<td>Chuvash #5</td>
<td>364</td>
<td>7.8</td>
<td>5.4</td>
<td>27.9</td>
<td>9.8</td>
<td>4968</td>
</tr>
<tr>
<td>Control</td>
<td>Mean</td>
<td>452</td>
<td>7.6</td>
<td>8.3</td>
<td>52.6</td>
<td>18.1</td>
</tr>
<tr>
<td>SD</td>
<td>101</td>
<td>3.7</td>
<td>3.9</td>
<td>36.7</td>
<td>11.2</td>
<td>1140</td>
</tr>
<tr>
<td>Control</td>
<td>Mean</td>
<td>339</td>
<td>4.9</td>
<td>7.0</td>
<td>44.9</td>
<td>19.8</td>
</tr>
<tr>
<td>SD</td>
<td>57</td>
<td>2.1</td>
<td>1.7</td>
<td>14.3</td>
<td>7.9</td>
<td>750</td>
</tr>
<tr>
<td>P value</td>
<td>0.08</td>
<td>0.07</td>
<td>0.58</td>
<td>0.73</td>
<td>0.85</td>
<td>0.69</td>
</tr>
</tbody>
</table>

CS, citrate synthase activity; GluDH, glutamate dehydrogenase activity; GlyPDH, glyceraldehyde-3-phosphate dehydrogenase activity; HAD, 3-hydroxyacyl-CoA dehydrogenase activity; MHC, myosin heavy chain; MLC, myosin light chain; PDCt, pyruvate dehydrogenase complex total activity.

Table 3. Changes in mRNA expression levels in Chuvash polycythemia patients relative to control participants

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Fold change</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HK1</td>
<td>1.4</td>
<td>0.8–2.1</td>
<td>0.06</td>
</tr>
<tr>
<td>HK2</td>
<td>0.76</td>
<td>0.27–2.18</td>
<td>0.57</td>
</tr>
<tr>
<td>PFKM</td>
<td>1.4</td>
<td>1.1–2.0</td>
<td>0.04</td>
</tr>
<tr>
<td>M1-PKM</td>
<td>1.8</td>
<td>1.2–2.8</td>
<td>0.01</td>
</tr>
<tr>
<td>M2-PKM</td>
<td>1.8</td>
<td>1.1–3.0</td>
<td>0.04</td>
</tr>
<tr>
<td>PDP1</td>
<td>0.55</td>
<td>0.27–1.11</td>
<td>0.09</td>
</tr>
<tr>
<td>PDP2</td>
<td>0.67</td>
<td>0.30–1.48</td>
<td>0.28</td>
</tr>
<tr>
<td>PDK1</td>
<td>2.0</td>
<td>1.1–3.5</td>
<td>0.03</td>
</tr>
<tr>
<td>PDK2</td>
<td>1.9</td>
<td>1.3–2.7</td>
<td>0.004</td>
</tr>
<tr>
<td>PDK3</td>
<td>1.8</td>
<td>0.6–2.1</td>
<td>0.53</td>
</tr>
<tr>
<td>PDK4</td>
<td>5.5</td>
<td>1.7–18.4</td>
<td>0.01</td>
</tr>
<tr>
<td>LDHA</td>
<td>1.5</td>
<td>0.8–2.7</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Expression data at the mRNA level for hexokinase 1 isoforms (HK1) and (2), muscle phosphofructokinase (PFKM), M1 isoform of muscle pyruvate kinase (M1-PKM), pyruvate dehydrogenase complex total activity (PDCt), and lactate dehydrogenase A (LDHA). The 95% confidence interval (95% CI) is reported for each fold change.
A further finding in cell culture is that HIF-1 may regulate the expression of cytochrome oxidase subunit 4 isoforms (15). It thus is possible that their expression differs in the CP patients and controls, and this difference could affect the efficiency with which they are able to consume oxygen within the muscle. Our muscle biopsy analyses were limited by the amount of tissue available, and we were unable to assess this possibility.

Given the magnitude of the effects of CP on skeletal muscle metabolism during exercise, there were remarkably few aberrations in glucose, lactate, and pyruvate metabolism after meal intake in CP patients. Glucose homeostasis after meal intake was normal. Notably, lactate uptake in the forearm in CP patients was no different from that in control participants in both the resting pre- and postprandial states. Arterial blood lactate concentration increased more in CP patients after meal intake, but the origin of this lactate is not known. Tissues with a net production of lactate are brain, intestine, blood cells, skin, and adipose tissue (33–35), whereas kidney (renal cortex) and liver remove lactate (36). Skeletal muscle will extract or produce lactate depending on metabolic state and muscular workload. There was no association between the rise in plasma lactate and hematocrit (higher in some CP patients than in controls), suggesting that generation of lactate from blood does not contribute to the difference between the groups. The production of lactate from skin also probably can be assumed to be constant. The contribution of lactate production from adipose tissue was not likely to have been very significant in a whole-body perspective, at least not in these groups of moderately lean people. Therefore, the postprandial rise in lactate would seem more likely to depend on a CP-specific effect on intestinal lactate production, on a reduction in postprandial hepatic lactate clearance, or a combination of both. Changes in pyruvate concentration mirrored those of lactate, and there were no differences between groups in the lactate/pyruvate ratios in blood; these findings are consistent with there being no major disturbance of the cellular cytosolic redox state.

The meal intake gave us the opportunity to examine the postprandial rise in plasma insulin to search for an insulin-secretion defect. Such defects have been reported recently in mice with a conditional deletion of VHL within pancreatic β cells (37–39). Because the rise of meal-stimulated insulin appeared normal and also appeared to control postprandial plasma glucose concentrations within a normal range, we conclude that the subtle systemic VHL deficiency present in CP patients causes no gross abnormality in insulin secretion.

With respect to their cardiopulmonary phenotype, CP patients generally appear to phenocopy sea-level natives who have been acclimatized (40, 41). This situation has been termed the “lactate paradox” (41–43). In contrast, our CP patients exhibit the opposite effect. However, not all studies have detected the reduction in lactate accumulation during exercise following acclimatization (44, 45), and the existence of the lactate paradox is a matter of debate (43, 46–50). In a similar manner, there is a debate as to whether there are any benefits associated with a “live high, train low” regimen for endurance athletes other than those that may arise from the associated erythrocytosis (51).

Our results suggest that sustained activation of the HIF pathway is more likely to be deleterious to such performance. The meal intake gave us the opportunity to examine the postprandial rise in plasma insulin to search for an insulin-secretion defect. Such defects have been reported recently in mice with a conditional deletion of VHL within pancreatic β cells (37–39). Because the rise of meal-stimulated insulin appeared normal and also appeared to control postprandial plasma glucose concentrations within a normal range, we conclude that the subtle systemic VHL deficiency present in CP patients causes no gross abnormality in insulin secretion.

Materials and Methods

Participants. Five CP patients and five healthy control participants took part in the study. Table 1 shows the characteristics of individual participants. CP patients were identified from previous studies (20, 54). Control participants were recruited by advertisement. Each CP patient was homozygous for the classic Chuvash mutation (19) and had been treated with long-term venesection to maintain a hematocrit near normal. Nonetheless, two patients presented with high hematocrits (62% and 64%) on the first day of the experiments. No patient had undergone venesection within several weeks of the experiment. The patients had no history of complications, and were asymptomatic except for occasional headaches and tiredness. The number of CP patients included in the study was limited by the rarity of this condition in the United Kingdom. Control participants were chosen to match CP patients for gender and, as far as possible, for a combination of age, physical fitness (based on the amount of exercise taken each week), and body build. Each participant was informed about the aims, procedure, and details of the study and signed a written informed consent form before taking part in the experiments. The study conformed to the Declaration of Helsinki and was approved by the Oxfordshire Research Ethics Committee.

Experimental Procedure. The experiments were performed over 2 consecutive days and included an incremental bicycle exercise test to exhaustion, a small muscle mass exercise test, a standard meal tolerance test, and a muscle biopsy. These tests were ordered chronologically to minimize the effects of each test on the others as follows. On the morning of the first day, participants undertook the small muscle mass (calf) light exercise tests for biochemical investigation using 18F MRS. In the afternoon muscle biopsies were taken from the nonexercised vastus lateralis after infiltration of the biopsy area with 1% lidocaine. In the evening participants were given a low-fat meal. On the second day, the standardized meal tolerance test was administered; arteriovenous differences in metabolites concentrations were measured before and for 5 h after the consumption of the meal. The second day ended with the incremental exercise test to exhaustion on the cycle ergometer. Participants fasted overnight from 8:00 PM before each experimental day. They also were asked to avoid vigorous exercise and alcohol and caffeine consumption for 48 h before the experiments.

The methods for each test followed standard procedures. Detailed methodology for the incremental exercise test to exhaustion, small muscle mass exercise for investigation with MRS, the standard meal tolerance test, muscle biopsy analyses, and statistical analysis are described in SI Materials and Methods.

ACKNOWLEDGMENTS. We thank the subjects who participated in this study. F.F. was funded by a University College Oxford Postdoctoral Research Scholarship and the Fell Fund from the Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom. This work was supported by the British Heart Foundation (Programme Grant RG/07/004) and the Wellcome Trust, United Kingdom (Grant 075876).

Supporting Information

Formenti et al. 10.1073/pnas.1002339107

SI Materials and Methods

Incremental Exercise Test to Exhaustion. Participants’ exercise capacity was measured through an incremental exercise test to exhaustion on a modified, electrically braked cycle ergometer (Mijnhardt KEM3; Cardiokinetics). At the start of exercise, participants were given 30 s to achieve the required pedaling frequency (∼65 revolutions per min) before the workload was increased by 20 W per min until exhaustion. Exhaustion was defined as the point at which the participants could no longer maintain the required pedaling frequency. Venous blood was sampled at the end of each work load (i.e., every minute) to measure venous blood lactate concentration. Participants breathed through a mouthpiece, with their nose occluded. PO2 gases were sampled through a catheter and analyzed continuously by mass spectrometry. Respiratory volumes were measured by means of a turbine volume-measuring device. Breath-by-breath data were averaged for each min of exercise. Room temperature during exercise was ∼21 °C.

Small Muscle Mass Exercise for Investigation with Magnetic Resonance Spectroscopy. Participants reported to the laboratory early on the second day after an overnight fast. Skeletal muscle 31P magnetic resonance spectroscopy (MRS) was performed in a Siemens Tim Trio 3.0-Tesla magnet with a 60-cm clear bore, interfaced with Syngo software. The participants were positioned supine and a dual-tuned 31P and 1H 6-cm-diameter surface coil was secured under the right calf muscle. The right foot was fastened to a custom-built nonmagnetic plantar flexion exercise apparatus and was immobilized with the leg straightened. The plantar flexion exercise apparatus was similar to the one previously described by Tran et al. (1). The exercise protocol consisted of 3 min of rest followed by three 5-min periods of exercise interspersed with 7-min recovery periods. The work rates for subsequent exercise periods were 3 W, 4 W, and 5 W. The calf was exercised at 1 Hz, in time to a digital metronome, which was played through the magnet room speakers. Participants were monitored continuously, and none had difficulty keeping time or completing the exercise.

Transverse gradient echo scout images of the lower leg were acquired to ensure correct positioning of the participant’s leg and to select a region of interest within the calf muscle for localized shimming. Three baseline scans were acquired to allow corrections for partial saturation caused by the rapid magnetic pulse repetition time and nuclear Overhauser enhancement (NOE). The data acquisition consisted of a series of 444 31P spectra acquired throughout the exercise protocol described above with a temporal resolution of 5.5 s. The acquisition parameters were as follows: 500 ms repetition time, 0.35 ms short echo time, 4,000 Hz spectral width, 10 averages, 1,024 data points, nominal 25° flip angle, and 10 rectangular NOE pulses, with a pulse duration of 10 ms, an interpulse delay of 10 ms, and an excitation flip angle of 180°.

After phasing and baseline correction, spectra peaks were fitted using the automated AMARES algorithm, within the jMRUI software package (version 2.2) (2, 3). Absolute millimolar concentrations of phosphorus metabolites were calculated assuming that the concentration of cytosolic ATP at rest is 8.2 mM; this commonly used standard concentration is based on values extensively reported in the published literature (4).

Intramuscular pH was calculated on the basis of the chemical shift (σ) of phosphate relative to phosphocreatine in parts per million:

\[
\text{pH} = 6.75 + \log_{10} \left(\frac{\sigma - 3.27}{5.63 - \sigma} \right)
\]

[1]

Standard Meal Tolerance Test. The standardized meal consisted of Rice Krispies (Kellogg Company) semiskimmed milk, dried skimmed milk powder, fresh orange juice, and a chocolate drink. The chocolate drink contained cocoa powder (2 g), palm oil (14 g), safflower oil (14 g), emulsifier (0.4 g), sweetener (1.2 g), and hot water (35.5 g). The caloric content of the fiber-free standard meal was scaled to each participant’s body weight and height, so that it corresponded to about 40% of the daily energy requirement. The proportions of energy sources were constant for all participants. Protein provided 13% of the total energy intake, fat 38%, and carbohydrates 49%.

Participants rested on a bed throughout the study. Cannulae were inserted under local anesthetic into both the femoral artery and retrogradely into a vein draining the deep structures of the forearm. These cannulae were kept patent by a slow infusion of 0.9% (wt/vol) saline. Two sets of blood samples were taken 30 min apart in the fasting state. Following the standardized meal, paired arterial and venous blood samples were taken at varying time points over the subsequent 5 h. Two minutes before each sample was taken, a wrist cuff was inflated to 200 mm Hg to prevent contamination of the venous blood from the forearm vein by blood from the hand. Blood samples were used to quantify glucose, insulin, lactate, and pyruvate as described elsewhere (5, 6). Forearm muscle blood flow was assessed by strain-gauge plethysmography (7).

Muscle Biopsy Analyses. A portion of frozen muscle tissue was used to determine muscle fiber composition. The muscle was homogenized in a pyrophosphate extraction buffer (pH 9.5) supplemented with protease and phosphatase inhibitors (Sigma). Actomyosin was extracted from the homogenate by vibrating for 1 h in a cold room (0 °C) and then centrifuging at 10,000 × g for 10 min at 2–8 °C. The supernatant was mixed 1:1 with standard Laemmli sample buffer, boiled, and then run on a 5% SDS/PAGE gel for 18 h at 70 V to separate the myosin heavy-chain isoforms. The bands were identified with silver staining. The gel then was scanned using a Duoo Scan T1200 Aga scanner, and bands were quantified using the Quantity One program (Bio-Rad). Optical densities were adjusted by subtracting the local background. All values were normalized to the intensity of the actin band. Estimation of muscle fiber composition using this approach has been shown to be in good agreement with a standard histochemical approach for determining fiber composition on muscle sections (8).

A second portion of the frozen muscle was freeze dried, dissected free of visible connective tissue, and powdered. Muscle glycogen content of this powdered tissue was measured using a modified version of the spectrophotometric method of Harris et al. (9).

A further portion of the frozen muscle was used to determine pyruvate dehydrogenase complex total activity (PDCt), that being the total (dephosphorylated) active form of the complex. Briefly, PDCt activity was assayed in a buffer containing sucrose, Tris, EDDA, with Mg2+, Ca2+, and dichloroacetate added to activate the pyruvate dehydrogenase complex (PDC) phosphatase and inhibit PDC kinase, respectively. PDCt was expressed as rate of acetyl-CoA formation [nmol ⋅ (min/· mg protein)] at 37 °C using a radioactive substrate. Further details are as described elsewhere (10).
Another portion of muscle was homogenized on ice in a solution containing KH₂PO₄ 50 mmol L⁻¹, EDTA 1 mmol L⁻¹, and Triton X-100 0.05% using a glass homogenizer. The muscle extract then was centrifuged at 20,000 × g for 3 min, and the supernatant was used to measure the activities of glutamate dehydrogenase, citrate synthase, 3-hydroxyacyl-CoA dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase, as described by Opie and Newsholme (11) and Zammit and Newsholme (12). Protein concentration was determined using the method of Peterson et al. (13).

A final portion of muscle from the Chuvash polycythemia (CP) patients was used for quantitative RT-PCR. Because there was not enough material from the matched control samples, other biopsies taken from healthy adult participants were used for this analysis. The assays used Taqman chemistry and were undertaken on an ABI Prism 7000 sequence detector (Applied Biosystems) according to the manufacturer’s protocol. Hydroxymethyl bilane was used as the internal control.

Statistical Analysis. Differences between the CP patients group and the control participants group were assessed by means of two-tailed Student’s paired t test; pairing was undertaken based on age, gender, height, weight, and weekly level of physical activity. For the quantitative RT-PCR results for which there were no paired control samples, an unpaired t test was used. Statistical significance was set at P < 0.05. Variables are presented as means ± SD, unless otherwise stated.

Fig. S1. SDS/PAGE analysis of myosin heavy-chain isoforms after silver staining. Myosin heavy-chain isoforms (MHC-I, MHC-IIA, MHC-IIX, MHC-IIIB) in vastus lateralis muscle were obtained from CP patients (lanes 2, 4, 6, 9, 10) and control participants (lanes 1, 3, 7, 8). Fiber type did not differ significantly between the two groups. The proportion of fibers type I, IIA, IIX, and IIb for the control group was 19.8 ± 2.4%, 25.7 ± 2.1%, 35.4 ± 4.9%, and 19.1 ± 2.9%, respectively, and for the CP group were 17.2 ± 2.5%, 23.9 ± 1.4%, 31.9 ± 2.9%, and 27.0 ± 2.8%, respectively.
Fig. S2. Results from Chuvash polycythemia patients and control participants for arterial (A) glucose, (B) insulin, (C) pyruvate, and (D) lactate and forearm (E) blood flow, (F) glucose uptake, and (G) lactate uptake measured through the standard meal tolerance test. Empty circles show results from the control group; filled circles show results from the Chuvash polycythemia group. Data are mean ± SD. Values are for $n = 5$, apart from lactate for the control group where $n = 3$, at times −30, 20, 150, and 240 min. *$P < 0.05$.