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ABSTRACT 

In the companion paper (Part I), a data set was introduced, consisting of 

longitudinal Mn-enhanced MRI (MEMRI) images of the developing mouse brain, 

covering the time points between postnatal days 1 to 11. In this paper, we describe the 

methods used to analyze voxel-wise and region-wise changes in brain volume. The 

analysis of densely sampled longitudinal brain development data, in which brain growth 

between early and late time points is sufficiently advanced to make them too different to 

easily align to each other, poses a unique set of challenges for automated analysis 

approaches. The core methods consist of image registration to define the transform 

mapping temporally adjacent scans to each other, transform concatenation to bring all 

scans into a common space, and computation of the Jacobian determinant of those 

concatenated transforms to obtain measures of volume change. Linear mixed-effects 

models are used to compute the relationship between time and local brain growth, and 

log-likelihood tests between nested models employed to make inferences about factors 

that describe or influence brain development.  
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INTRODUCTION 

The advent of in vivo MRI opened the unprecedented possibility of non-

invasively studying brain development. In both human and small animal studies, we can 

now repeatedly scan the same individual at different times during their development, 

starting as early as gestational stages (Berrios-Otero et al., 2012; Nieman and Turnbull, 

2010; Studholme, 2011) and continuing into later postnatal stages (Thompson et al., 

2009; Voineskos et al., 2011). This data has provided new insights into patterns of 

cortical development (Raznahan et al., 2011), genetic versus environmental influences on 

brain development (Lenroot and Giedd, 2011; Schmitt et al., 2009), and covariance 

patterns in brain development (Alexander-Bloch et al., 2013), to cite just a few examples. 

The creation of longitudinal imaging datasets has necessitated the development of 

novel methods for their analysis. The most prominent methods rely on either tissue 

classification optionally followed by further processing of individual brain structures (e.g. 

deformable models for extracting the cortex) (Fischl and Dale, 2000; Kim et al., 2005), or 

a combination of linear and non-linear image registration approaches wherein 

development across time is encapsulated in the transform required to deform one image 

to another (Avants and Gee, 2004; Collins et al., 1995; Studholme et al., 1996). This 

latter class of registration-based methods is flexible across different imaging contrast 

mechanisms and especially powerful in analyzing data from animal models (Lerch et al., 

2011; Nieman et al., 2011). 
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Here we describe methods for the analysis of densely-sampled longitudinal image 

time series of brain development. These methods were created to analyze the data 

described in the accompanying paper (Szulc et al., 2015), yet are applicable to any dense 

developmental dataset. Briefly, the data we used consisted of 12 mice imaged with 

manganese (Mn)-enhanced MRI (MEMRI) every second day from postnatal day (P)1 

onwards. The mice were divided into two cohorts, with six mice (the odd day cohort) 

imaged at P1, P3, P5, P7, P9, and P11 and six different mice (the even day cohort) 

imaged at P2, P4, P6, P8, and P10. The MEMRI scans covered the entire brain with 

exquisite contrast at 100 isotropic resolution. The early postnatal time period covered 

in this dataset, which corresponds roughly to late gestation in human brain development 

(Clancy et al., 2001), features significant overall brain growth together with region-

specific alterations in local brain shape. The cerebellum, for example, acquires its 

complex folding (foliation) pattern during this period (Sillitoe and Joyner, 2007). 

The analysis of the neonatal mouse data described above, - and generally of any 

dense longitudinal early brain development dataset – holds both challenges and 

opportunities: 

• The brain changes to such an extent between the first and last time point that a 

direct mapping between them is not possible. 

• Developmental patterns vary considerably across the brain; capturing that 

regional variability is in and of itself interesting. 

mm
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• Patterns of brain development need to be captured across all mice and how 

individual mice differ from the group average must be determined. 

Our implementation for addressing each of these builds on significant prior work 

in the literature. In particular, we rely on extensive efforts in designing deformable 

registration algorithms and their extensions to time-series data (Aljabar et al., 2008; 

Gogtay et al., 2008; Gogtay et al., 2006; Sadeghi et al., 2010; Thompson et al., 2000). We 

extend that work by taking it to denser longitudinal data, which both poses additional 

challenges and brings opportunities for analyses and inferences not hitherto accessible 

from human brain imaging. 

Our approach to analyzing this dense longitudinal brain development data is 

divided into two components: (1) image processing and registration of the input data and 

(2) statistical analysis of resulting transforms. Each will be described in detail below. 
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METHODS 

Animals and longitudinal MEMRI data sets 

All mice used in this study were maintained under protocols approved by the 

Institutional Animal Care and Use Committee of New York University School of 

Medicine. The mouse handling and image acquisition methods are described in detail in 

the companion paper (Szulc et al., 2015). 

Registration 

Our proposed approach to analyzing dense developmental data relies on image 

registration at its core, where differences between two images (  and ) are captured by 

the transformation that maps one onto the other. Multiple algorithms have been proposed 

to optimally perform this alignment (Klein et al., 2009); we adopt the Lagrangian 

diffeomorphic registration technique implemented in the ANTs toolkit (Avants et al., 

2006; Avants et al., 2008). This registration method uses symmetric normalization (SyN) 

to create a mapping between images  and . Briefly, SyN weights the contributions of 

 and  equally in finding the transformation between them. This transformation is 

invertible and, if both  and  are deformed to the midpoint of the transform, they will 

be identical. In a study of 14 non-linear image registration methods (Klein et al., 2009), 

SyN consistently outperformed other optimization strategies. 

The alignment of one image to another must be placed within the larger context of 

analyzing the full developmental dataset consisting of multiple subjects with repeated 

image acquisitions each. There are several registration strategies that can be pursued 

I J

I J

I J

I J
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towards the goal of providing insights into both individual and population level trends. A 

successful strategy needs to (a) map all  images for any individual subject to determine 

evolution in local brain shape over time, and (b) map all  subjects into a common space 

so that differences within the population at any one point in time as well as in evolution 

across time can be captured. For the type of data employed in this study, achieving (b) 

can be a challenge, as not every subject in the data set can be aligned to every other 

subject (e.g. it is not possible to accurately register a P1 scan to a P11 scan, even for the 

same mouse). Below, we describe two approaches for overcoming this challenge and 

discuss their advantages and disadvantages. 

The first registration strategy employed, depicted graphically in Figure A-1 (see 

Supplemental Video A-1 for the complete set of 3D brain images depicted in Figure A-1) 

is the registration chain. In this strategy, each scan is registered to the next scan in the 

series for the same mouse. For example, consider Mouse 3 in the odd day cohort. First, its 

P1 scan is aligned to its P3 scan. Next, the P3 scan is aligned to the P5 scan, followed by 

P5 to P7 and so on. Similarly for a given mouse in the even day cohort, the P2 scan is 

aligned to P4, P4 to P6 and so forth. For each pair of scans, registration proceeds first 

linearly through a 12-parameter alignment, allowing uniform scales, shears, translations 

and rotations. The second part of the registration process is non-linear. Using the SyN 

optimization method described above, the scans are brought into correspondence, and the 

full transform from source to target (including both linear and non-linear components) is 

saved. In order to find the transformation between two non-adjacent time points for the 

same mouse, the appropriate transforms can be concatenated (e.g. to find the P1 to P5 

m

n
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transformation for a single mouse, one would concatenate the P1 to P3 and P3 to P5 

transforms). Thus, although we cannot directly register two scans that are far apart in the 

scan series, through transform concatenation we can create a chain of transforms between 

all time points for each mouse in the study. 

Once this has been achieved, a common space is still required to meaningfully 

compare differences at any point in time. This is done by registering all of the P10 and 

P11 scans in an iterative, group-wise registration procedure that is described in more 

detail in (Lerch et al., 2011). Briefly, group-wise registration proceeds as follows: after 

rigidly aligning all scans into the same coordinate space, each scan is aligned with all 

other scans in the data set via uniform scales, shears, rotations and translations. From 

these alignments, the best possible linear average (atlas) of all subjects is created. This 

atlas provides the starting point for an iterative non-linear registration process; all scans 

are aligned towards this atlas, resampled with the resulting transforms, and averaged to 

create a newer, more accurate atlas. This process is repeated multiple times until 

convergence is achieved. For this particular study, the result is an average of all the 

P10+P11 brains (henceforth referred to as the P10.5 average), and a transform from this 

average back to each P10 and P11 brain in the study. By concatenating these transforms 

with the transforms created by the registration chain, we have a way to go from this 

common space to every scan at every time point. 

The second registration strategy relies completely on the group-wise registration 

strategy described above and takes advantage of the balanced study design of the data 
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described in the companion paper. Overlapping group-wise registrations are performed 

on all scans from adjacent days within the odd day cohort and even day cohort as 

illustrated in Figure A-2. For example, a group-wise average is created from all P3 and 

P5 scans, and a separate group-wise average from all P5 and P7 scans. The two cohorts 

are, as in the registration chain, brought into a common space by a group-wise 

registration of the P10 and P11 scans. 

The ability to analyze each subject’s time series is maintained through 

overlapping adjacent scans. Each scan can be mapped to any other scan in the series by 

using appropriate forward and inverse transformations as illustrated in Figure A-3. For 

example, the following transform concatenations would bring the P7 scan from mouse 2 

into the common space (P10.5) created by the group-wise registration of all P10 and P11 

scans: 

  

(1) 

In Equation 1 averages are denoted by . So, the average from the 

P9+P11 groupwise registration is denoted as . Although we explicitly 

constructed , for much of our analysis we require . This can be attained 

simply by inverting the transform constructed in Equation 1. 

TP7®P10.5 = TP7®AvgP 7+P9
+TAvgP 7+P9®P9 +TP9®AvgP9+P11

+TAvgP9+P11®P11 +TP11®P10.5

AvgPI+PJ

AvgP9+P11

TP7®P10.5 TP10.5®7



 10 

For both the registration chain and group-wise registration strategies, linear 

registrations were performed using mni_autoreg tools (Collins et al., 1995) and non-

linear registrations utilized the ANTs toolkit (Avants et al., 2008), described above. 

The registration algorithms we use require sufficient homology between scans to 

work well. To ascertain which post-natal stages can be accurately registered to which 

other post-natal stages, and thus inform future study design, we aligned average images 

from each day to every other day. Accuracy was then computed using a manually 

segmented P10+P11 average image (described in more detail in Szulc et al., 2015) and 

the Kappa statistic: 

     (2) 

where  is common to the automatic segmentation and the ground truth,  is the sum 

of the voxels uniquely identified by the segmentation and the ground truth respectively. 

 takes on values between 0 and 1, with 1 indicating perfect agreement and 0 indicating 

chance agreement. See (Chakravarty et al., 2013; Collins and Pruessner, 2010; Klein et 

al., 2009) for further discussion of these measurements of registration accuracy. 

Statistical analysis 

At the end of the registration process using either of the proposed strategies, a 

transform exists from each scan to the P10.5 average. As described above, many of these 

transforms are created by concatenating transforms from multiple individual registrations. 

Each transform is then inverted so that it originates in the P10.5 average and terminates at 

k =
2a

2a + b + c

a b+ c

k
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a specific time-point and mouse. From these transforms (encoded by displacement 

fields), we can compute the Jacobian determinant (in P10.5 space) for each transform. 

This gives a measure of growth or shrinkage at every voxel for every image in the 

dataset. We can then analyze developmental patterns either at every voxel or by 

integrating the Jacobians across all voxels in a particular brain structure to compute the 

structure volume. The structures we used were obtained by manually segmenting the 

P10+P11 average and are described in more detail in (Szulc et al., 2015). 

Developmental patterns were analyzed using linear mixed effects models via the 

lme4 package in R (Bates et al., 2012; Team, 2013). Because each mouse was scanned 

repeatedly, measurements taken on the same mouse are not independent, and a normal 

linear model (which requires independence of all measurements) may not be used. Linear 

mixed effects models allow us to appropriately account for any structure in the data that 

is due to this repeated scanning so that these random effects do not bias our results. 

Although repeated measures ANOVA (rANOVA) is sometimes used in studies such as 

this one, the fact that we have an uneven number of scans for each mouse (6 in the odd 

day cohort and 5 in the even day cohort) makes it difficult for us to satisfy the 

assumptions necessary for this method (Pinheiro and Bates, 2000). Here, we introduce 

the standard formulation for a linear mixed effects model. We then take this general 

mathematical formalism and explain how we adapted it for this particular study. 

The general formula for a linear mixed effects model is as follows (Laird and 

Ware, 1982): 
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   (3) 

In Equation 3, is a response variable for the th measurement in the th 

subject. For the purposes of this study,  is a measurement in mouse  on the th day. 

These measurements correspond to either the value of the Jacobian determinant at a 

particular voxel, the volume of a particular brain structure, or another imaging measure 

for comparison (such as image intensity). For example,  could be the value of the total 

brain volume for Mouse 3 measured on day 5.  are fixed effects coefficients 

corresponding to fixed-effect regressors . Here, these regressors are cohort 

(whether or not a mouse was scanned on even or odd days) and the scan day itself.  

and  are the random effect coefficients and their regressors, respectively. In the 

present study, we consider the mouse ID to be a random effect; that is, aside from natural 

variability within the population, the differences in growth trajectories between mice are 

effectively random, and we need to account for this in our models. is the error term, 

and is assumed to be independent and normally distributed. We can therefore re-write the 

above formulation more specifically for our model as: 

            (4) 

yij j i

yij i j

yij

biq

zqij
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In the above equation,  is the cohort (odd or even), which depends only on the 

mouse  and not the scan day, . The scan days themselves are denoted . To model 

growth as a function of time, we used spline interpolation (the splines package in R) 

instead of a simple linear or polynomial fit. This is encapsulated in bk
k=3

l

å fk (dij )  term. 

Each  is natural spline basis function and  is the corresponding coefficient. For 

example, if we choose to use a natural spline with three degrees of freedom, this sum 

would expand to: 

        (5) 

 (where ) is a random effect that corresponds to a separate intercept for 

each mouse, and  (where ) is a random effect allows each the slope of the fit to 

vary for each mouse as well. With these two terms, we can model subtle differences in 

growth for each mouse, while necessarily separating this random effect from the fixed 

effects of cohort and day. 

Equation 4 is quite general, and relies on several assumptions. Specifically, we 

assume that the effect of cohort is significant enough to be included in the model, and we 

also assume that both a random slope and intercept per subject are needed. In order to 

validate the appropriateness of these assumptions, as well as make inferences on brain 

developmental patterns, we explicitly tested them using log-likelihood comparisons of 

nested models. 

ci

i j dij

f (dij ) bk

b3 f3(dij )+ b4 f4 (dij )+ b5 f5(dij )

b1i zij = 1

b2i zij = dij
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As an example of a log-likelihood comparison, consider the Jacobian determinant 

of a single voxel, measured in all subjects on all days. Alternatively, consider the volume 

of the hippocampus, measured in all subjects on all scan days. For both of these 

measurements, we’d like to find the best possible model for growth. To begin, we can 

compare a linear fit (first order natural spline) to a quadratic fit (second order natural 

spline). These fits are modeled as: 

  (6) 

In the above equations,  and  stand for the linear and quadratic fits 

respectively. Note that the only difference between them is the presence of the  

term in the quadratic equation. How much does this additional term improve the model of 

growth? We can answer this question using the standard log-likelihood test 

     (7) 

In Equation 7,  is the maximum likelihood of the linear model, subject to 

a set of optimized parameters . The analogous definition applies for . Here, 

the vector  indicates that we are considering the joint probability distribution for all 

measurements  in the construction of . For example,  could represent the volume 

of hippocampus, measured for each subject  across multiple days ( ). Note that 

L Q

b4 f4 (dij )

-2log
L(q̂L;y)

L(q̂Q;y)

L(q̂L;y)

q̂L L(q̂Q;y)

y

yij L y

i j
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Equation 7 follows the  distribution with  degree of freedom, which corresponds to 

the difference in the number of parameters between the two models. From this 

distribution and the value of the ratio given in Equation 7, we can find the appropriate p-

value for comparing these models.  generally indicates that the term in the 

denominator (in this case, the quadratic model) is a better fit. In every voxel in the brain 

and for each brain structure we used the log-likelihood test to compare linear and 

quadratic growth curves, as described here, as well comparing quadratic and cubic 

growth patterns (second vs third order spline fits) and cubic vs fourth order growth 

patterns (third vs fourth order). 

In addition to testing growth patterns, we also used the log-likelihood test to 

explicitly test whether or not there is a cohort effect. That is, does it matter if mice were 

first scanned on P1 or P2. In this instance, the models we compare are: 

 (8) 

The key difference in these equations is the presence of the  term in the second, but 

not the first. By using the log-likelihood ratio defined in Equation 7 (using the 

appropriate substitutions for  and ) we can assess whether or not cohort does 

have an effect on voxel and brain structure volumes. 

Similarly, we can nest random effects to assess whether each brain region or 

voxel requires a random intercept per subject or a random intercept plus a random slope 

c 2 1

p < 0.05

b2ci

yij ,NC yij ,C
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per subject. To compare these models, one would simply omit  from Equation 4, 

which is the term that corresponds to including a random slope. Comparing the resulting 

equation to Equation 4 using the log-likelihood test would validate whether or not the 

random slope is needed. 

In addition, we can explore the developmental curve while staying with regression 

splines by using general additive models (GAM) (Wood, 2004, 2011). Here the standard 

linear model formalism 

    (9) 

is modified as in equation (10) to allow explicit incorporation of smooth functions, where 

the degree of smoothness is estimated as part of the fitting. 

 
    (10)  

This provides the benefit of not having to determine the spline degrees of freedom 

beforehand, which could be especially beneficial given multiple voxels/brain structures. 

Instead, the effective degrees of freedom are estimated based on a penalized smoothing 

spline with degrees of freedom selected using generalized cross-validation (Wood, 2000). 

Alternatively, where we can apply prior knowledge about the type of brain growth 

expected, we can also describe our data using non-linear models. More specifically, we 

used two non-linear, sigmoidal functions to model growth, the Gompertz function 

    (11) 

b2idij

g(y) = b0 + f (x1)+ f (x2 )+ ...+ f (xp )

y(x) = b0exp(-b1exp(b2

x ))
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and the four-parameter logistic model 

    (12) 

Although both of these models are more complex than the linear model described 

in Equation 4, we gain the benefit of more interpretable terms in the models. For instance, 

in the Gompertz function,  is the rate of growth. 

We note that the p-values resulting from the log-likelihood test are slightly anti-

conservative (Faraway, 2006; Stram and Lee, 1994), and can be replaced with an accurate 

p-value using the parametric bootstrap. Here the null hypothesis of the two models being 

the same is tested by generating the base model, , and using its parameters to simulate 

new data  (we picked 1000) times. For each such simulation the log-likelihood value of 

the real data versus the simulated data is computed, thus generating a new distribution of 

log-likelihood values. The actual log-likelihood value from comparing the alternate 

model, , to  is then compared against this distribution to ascertain whether it is 

sufficiently extreme to reject the null hypothesis and thus declare that  provides the 

better fit. 

To account for the multiple comparisons created by testing at every voxel or 

every segmented brain structure we use the False Discovery Rate (Genovese et al., 2002). 

 

 

y(x) = f1

f2 -f1

1+ exp (f3 - x) /f4[ ]

b2

H0

n

H1 H0

H1
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Software 

The core algorithms described in these two papers are open source and freely 

available; an overview can be found at http://wiki.mouseimaging.ca. The registration 

pipelines are implemented in pydpiper (Friedel et al., 2014) (source code: 

https://github.com/mfriedel/pydpiper), and mixed effects models in R are exposed 

through RMINC (https://github.com/mcvaneede/RMINC). 
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RESULTS 

Comparison of registration strategies 

We introduced two different registration strategies for handling data sets of this 

type: the registration chain and the overlapping group-wise registration. A natural 

question that arises is whether or not these registration strategies give the same 

quantitative results. To assess this, we calculated brain structure volumes for the 

following brain structures (also depicted in Figure A-7 in the companion paper): whole 

brain, cortex, cerebellum, hippocampus, olfactory bulbs, caudate putamen, and the 

superior and inferior colliculi. These volumes were calculated twice at every time point 

for every mouse: once using the Jacobian determinants from the registration chain and 

once using the Jacobian determinants from the overlapping group-wise registration. For 

each volume, growth curves were fit using a third order natural spline and are shown in 

Figure A-4. For all brain structure volumes considered, the growth curves calculated by 

each method overlapped to within the calculated 95% confidence intervals. Moreover, for 

the larger structures (whole brain, cortex, and cerebellum) the growth curves were 

virtually identical. 

Modeling growth 

 We assessed three different strategies for understanding growth patterns in the 

brain in this early post-natal dataset. Results are shown in Figures A-5 and A-6 as well as 

Table 3-1. Brain growth between post-natal day 1-11 for the most part can be effectively 

modeled by a four parameter logistic regression which, unlike the Gompertz model, gives 
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realistic parameter estimates for the starting and ending volumes, which is particularly 

evident for the cerebellar compartments. Remaining brain structures, such the colliculi, 

follow a more clearly linear pattern between P1 and P11. Convergence of the logistic 

model in those cases is a problem, particularly evident when attempting to model 

alterations at every voxel (not shown), where 31% failed to converge. General additive 

models indicate that most brain compartments are best fit with approximately 4 degrees 

of freedom, though log-likelihood tests of different spline degrees of freedom show that, 

except for the colliculi which follow a linear pattern, a more conservative third order 

spline is adequate. Comparing growth patterns shows that the cerebellum clearly 

develops differently from the rest of the brain, but there is only weak evidence of 

differences within cerebellar compartments or within cerebral compartments. The 

cerebellum matures later, with slower initial growth followed by more rapid acceleration, 

as evidenced by the uniformly higher f3
 parameter and generally lowerf4

parameters from the logistic regression. 

Effect of imaging cohort 

There were two separate cohorts of six mice each; the odd day cohort was imaged 

on P1, P3, P5, P7, P9, and P11, whereas the even day cohort was imaged on P2, P4, P6, 

P8, and P10. We used log-likelihood tests to assess whether the two cohorts differed in 

regional volumes and/or developmental patterns. As seen in Figure A-7, there was a trend 

towards overall increase in brain volume in the even day cohort (q<0.06), with significant 

cohort effects identified in the Cerebellum as a whole (q<0.02) and vermis lobules VII 
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(q<0.03), VIII(q<0.02), and IX (q<0.02). Comparing an additive model (cohort + day) to 

an interaction model (cohort * day) revealed no significant effect of cohort on 

developmental patterns, though the hippocampus and vermis lobules VIII, IX, and X 

reached trend levels (q<0.06). 

Registration accuracy 

To test how accurately brain images can be registered across days an average 

image from each day was registered to every other day, and the registration accuracy 

computed by comparing the best available labels for each day to those from each 

registration. As can be seen in Figure A-8, accurate registrations can be obtained to 

within two days of the early scans (P1-P5, and increasing in range for the later days (P6-

P11). 
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DISCUSSION 

In this paper we described the data analysis methods that allow for inferences on 

densely sampled longitudinal brain development data. The need for novel methodology 

originated from the need to analyze in vivo early postnatal mouse brain MEMRI images 

described in the companion article (Szulc et., 2015). Differentiating this dataset from 

previous longitudinal brain imaging studies described in the literature is the fact that it 

involves multiple datasets per animal over a time-period where the brain undergoes large 

changes in shape. 

The analysis methods we have implemented rely on image registration to bring 

homologous points into correspondence. This is inherently a 4D (time and space) 

problem, similar to registration challenges involving DCE-MRI (Hodneland et al., 2014). 

In either case, we deconstruct the problem into a series of 3D optimization problems 

either between adjacent scans in the time-series or between an individual scan and an 

evolving average anatomy of all scans at that age. Continuity in the time dimension is 

never explicitly optimized, but instead assured through a combination of concatenating 

appropriate transforms and adding a smoothing function - a spline - on time in the final 

statistical analyses. 

Alternate solutions proposed in the literature are either similar to our use of 3D 

registration between adjacent time points (Gogtay et al., 2008; Gogtay et al., 2006; 

Thompson et al., 2000; Wang et al., 2013), or assume the existence of homology between 
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all scans in the time-series. Examples of the latter include the FreeSurfer longitudinal 

module, wherein intermediate representations are created to avoid bias towards any one 

scan being treated as baseline (Reuter and Fischl, 2011), as well as the aBEAT toolkit 

(Dai et al., 2013), which requires the simultaneous registration of an atlas to all 

longitudinal images (thus assuming homology). While many aspects of these techniques, 

in particular their use of deformable models and tissue segmentation, could be 

incorporated into the analysis of the mouse postnatal MEMRI dataset described here, 

they could not be used without significant modifications akin to what we implemented to 

account for the differences between the beginnings and ends of the time-series. Similarly, 

it needs to be remembered that the mouse brain is smooth, lacking cortical folds, which 

makes registration both within and across animals more powerful than the equivalent 

would be in human datasets given the highly idiosyncratic cortical folding patterns 

(Mangin et al., 2010). 

Statistical analyses were carried out using massively univariate (i.e. separate test 

at every voxel or for every brain structure) linear mixed effects models and corrected for 

multiple comparisons using the False Discovery Rate (Genovese et al., 2002). To make 

inferences on the data we chose to compare nested models using log-likelihood tests. This 

allows us to frame any inference on the basis of whether the simplest fit of the data, that 

voxel/volume size is modeled by a linear effect of time with a separate intercept per 

subject, can be improved by additional terms. The advantage of this approach is that it 

can be used for both fixed (number of spline degrees of freedom, cohort effects) and 

random effects (whether a separate slope is needed per subject). It also circumvents the 
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challenges surrounding how to determine degrees of freedom for linear mixed effects 

models. The use of the chi-squared distribution for assessing the outcome of the log-

likelihood test is, however, somewhat anti-conservative. To assure that we weren’t 

biasing our results, we used the parametric bootstrap (Faraway, 2006; Stram and Lee, 

1994) on a subset of our results. While much more computationally expensive than log-

likelihood followed by a chi-squared test, the parametric bootstrap method is free from 

this bias. In the end, we found that simple log-likelihood testing and the parametric 

bootstrap produced the same results, and we thus kept the computationally simpler log-

likelihood tests. 

A core aspect of understanding brain development data from longitudinal 

acquisitions is correctly modeling time. We assayed three approaches. The first, and in 

the end most powerful, approach was to model time as a natural spline within the linear 

mixed effects models. We used log-likelihood tests to assess the spline degrees of 

freedom required, and found that it varies in space, with the inferior colliculus, for 

example, showing linear growth whereas the cerebellum followed a more cubic pattern 

which differed significantly from the rest of the brain. The upside of using splines is their 

simplicity; the downside is the need for selecting degrees of freedom as well as the 

relative difficulty in interpreting individual spline components in the model. To overcome 

these limitations we attempted to both use general additive models as well as non-linear 

mixed effects models. General additive models also use splines to model time, yet 

determine the degrees of freedom needed from the data (Wood, 2000). On our data, 

however, they appeared to consistently overestimate the required degrees of freedom. 
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Additionally, it is difficult to model interactions when using general additive models, 

somewhat limiting their applicability for a subset of the inferences we sought to make. Of 

the two non-linear models we used, the Gompertz model and the four parameter logistic 

model, the latter provided more believable parameter estimates than the former. The 

advantage of these non-linear models is the intuitive meaning that can be assigned to each 

of the model parameters; the major downside we found was the lack of convergence in all 

brain structures. This was especially the case when modeling voxel-wise data, where lack 

of convergence became a significant issue across much of the brain. In the end, using 

mixed effects models with a spline term for modeling time remains the most 

recommended method, though the judicious use of non-linear models should be 

encouraged. 

Future studies of early post-natal mouse brain development face several choices 

in study design. The first is how densely to sample in time. Estimating the accuracy with 

which each post-natal stage can be registered to every other indicate that, between P1 and 

P5, at most one day can be skipped. Later days, however, feature neuroanatomy with 

more homology, thereby allowing for increased scan spacing while still enabling accurate 

registrations between those stages. Additional concerns relate to the numbers of mice 

necessary. A recent paper of ours (Lerch et al., 2012) explored the tradeoff between 

number of mice and numbers of scans per mouse in great detail, and so we will not 

belabor that point here. Lastly, the issue of Mn toxicity, effects of anesthesia, and stress 

related to maternal separation need to be taken into account as discussed in (Szulc et al., 

2015) and also identified by the differences in anatomy between the even and odd day 
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cohorts. If that concern is crucial for phenotyping a novel mouse-line then 

complementing in-vivo MEMRI with ex-vivo diffusion weighted images (Portmann et 

al., 2014; Zhang et al., 2006) should be encouraged. 

Of the two registration approaches described, the registration chain and 

overlapping group-wise registration, the chain is the more general as it does not have the 

same requirements of equally spaced scans for all subjects. If applied to human data it 

also has the advantage of not having the same requirement for homology across all 

subjects. The downside of the registration chain is that it loses the advantages inherent in 

group-wise registrations, including greater robustness to noise and less bias towards any 

one baseline scan or atlas (Fonov et al., 2011; Guimond et al., 2000; Reuter and Fischl, 

2011). In our case we also found that the two strategies produced almost identical results, 

thus leaving the decision of which strategy to use to be based on the more practical 

considerations outlined above. 

 In summary, we have outlined a framework for the analysis of dense longitudinal 

brain imaging data, combining image registration, transform concatenation, and statistics 

on the resulting deformation fields to make inferences about regional brain growth. This 

approach is applicable to any similar dataset be it from animal models or human studies. 

Combined with the acquisition of early mouse brain developmental data described in 

(Szulc et al., 2015) we envision a plethora of interesting scientific questions on normal and 

abnormal brain development that can be answered using these methods. 
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Figure A-1. Longitudinal data analysis through a registration chain. Here each scan from 

each individual mouse in the dataset is linearly and non-linearly registered to the next 

scan in the series for that mouse. For example, the P3 scan for Mouse 2 in the Odd day 

cohort is aligned to the P5 scan of Mouse 2 in the Odd day cohort. The final scans of all 

mice, acquired on days P10 and P11 for the Even day cohort and Odd day cohort 

respectively, are then aligned using group-wise registrations (shown in red.) 
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Figure A-2 
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Figure A-2. Longitudinal data analysis through overlapping group-wise registrations. 

Here we take advantage of the improved registration performance and numerical stability 

of groupwise registrations; adjacent days for each cohort are aligned together, so that 

every brain, with the exception of those at the beginning of the series, participates in two 

groupwise registrations. For example, the P5 scans are incorporated in both a registration 

of all P3 and P5 scans and in another registration of all P5 and P7 scans. The even and 

odd day cohorts are joined by registering the P10 and P11 scans together. 
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Figure A-3. Example concatenations necessary to take the P1 scan of one mouse to the 

consensus P10+P11 space. The overlapping groupwise registrations allows one to take 

any brain into the space of any other brain through appropriate transform concatenations 

and inversions. The figure above illustrates the process of taking the P1 scan of Mouse 2 

in the Odd day cohort into the final space of all P10 and P11 scans. This is accomplished 

by taking the forward transform of every groupwise registration and concatenating with 

the inverse transform of the second timepoint in each groupwise registration. 
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Figure A-4. Comparison of brain structure volumes: registration chain vs. overlapping 

groupwise registration methods. In this figure, we compare growth curves for various 

brain structure volumes. The top row shows growth curves for brain structure volumes 

for the whole brain (WB), cortex (Cx) and cerebellum (Cb). The bottom row depicts 

growth curves for the hippocampus (hi), olfactory bulbs (OB), caudate putamen (CP), 

superior colliculus (SC) and inferior colliculus (IC). From left to right, we show results 

from the registration chain, group-wise registration, and both methods superimposed. For 

many structures, the growth curves generated from the two different methods are quite 

similar. The grey bars around each curve represent 95% confidence intervals. 
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Figure A-5  
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Figure A-5. Slope fitting. Different fits are illustrated for three regions, starting with the 

four-parameter logistic model, followed by the general additive model. The residuals of a 

linear with model with either one or three degrees of freedom on the spline fit further 

illustrate how the IC follows a relatively linear growth during the first 11 days of 

postnatal life, whereas the cerebellum and folia VIa need a higher order spline to model 

the “S” curve growth they undergo. To fully compare growth curves we performed 

pairwise comparisons of all segmented structures after scaling the values by subtracting 

the mean and dividing by the standard deviation separately for each structure. Pairwise 

comparisons were computed by fitting with and without a by structure interaction term, 

and the p-value of a log-likelihood test of those two models retained. A quick 

examination of the heat map of those p-value shows that the cerebellum clearly grows 

differently from the rest of the brain, but that the cerebellar subregions follow a relatively 

homogenous pattern.  
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Figure A-6. Assessing the type of curve that best describes regional brain development.  

Brain development patterns were tested by fitting four different linear models at every 

voxel using natural splines with increasing degrees of freedom, and at each voxel fits 

compared using model comparison tests. The first column shows areas of the brain were 

there is significant evidence that a spline with two degrees of freedom provides a better 

fit than a spline with a single degree of freedom (i.e. a line), the next column compares 

two degrees of freedom to three degrees of freedom, and the third column 3 vs 4 degrees 

of freedom. Color bar is on a -log10 scale. The final column shows the resulting map of 

best fit degrees of freedom. 
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Figure A-7. Assessing the effect of imaging starting at P1 vs starting at P2. Starting 

imaging at P1 reduces global brain volume as compared to starting imaging at P2. These 

effects are exaggerated in the cerebellum compared to other structures like the inferior 

and superior colliculi. 
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Figure A-8. Registration accuracy. The accuracy of registering images from different 

postnatal stages are illustrated for all 7 labels combined as well as the cerebral cortex and 

the cerebellum individually, with the colors indicating the Kappa statistics obtained. A P1 

scan, for example, can be aligned with reasonable accuracy in the cerebellum to P2 and 

P3, but not to later stages, whereas a P7 scan can be aligned accurately to P8-P11. 

Cortical alignment across days has increased accuracy compared to cerebellar alignment. 
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Table A-1. Results of different curve fitting strategies. The first column shows the 

estimated degrees of freedom needed to fit a spline as determined by General Additive 

Models. To test whether higher order splines are indeed required, log likelihood tests of 

four different fits (with DF of 1 through 4) were carried out; the p-values are kept in the 

next three columns. The three parameter estimates from the Gompertz function and the 

four parameter estimates from the four-parameter logistic model follow, with entries left 

blank if the fitting did not converge. 
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Supplemental Video A-1. Brain development between P1 and P11. Brain development 

between P1 and P11 using the same viewing angle and rendering as in Figures 1 - 3. 

 

 


